
Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Introduction to AI

Philippe Laroque

UCP/ETIS/CNRS

Oct. 2008

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Outline I
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Outline II
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Brief History of AI

Goal: Analyse and mimic human behavior in a machine.
Intelligence? (Turing test).

Cybernetics (Wiener, Rosenblatt...), NN (perceptron).

1960, Mc Carthy & al: computer can be used to
manipulate symbols (Ada Lovelace, 1842). ELIZA
(Weiezbaum 1960): dialog with a psy

1969, Minsky/Papert: limitations of perceptron: NN frozen

1978, Newell & Simon: the GPS

1982, 5th-generation computers (Japan). Goal: parallel
thinking machine by '92

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Languages

1958, LISP (J. McCarthy, MIT): program from data

1973, PROLOG (A. Colmerauer): inference engines and
expert systems generators

80s: production rules, frame languages, script languages,
logical programming (PLANNER: goal generation for
problem solving)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Applications

Computer-aided programming, diagnosis (MYCIN 76),
design (R1 83), planning, education (LOGO)...

Problem solving (DENDRAL 71, organic chemistry) (AM
79, mathematical concepts discovery)

Games (chess, poker, bridge...)

Simulation (qualitative physics)

...

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Problems

�Common sense� modelling?

On real-sized applications: incompleteness of expertise,
errors in rules, inconsistency within rule sets...

Learning

Combinatory explosion (NP-complete problems): ex. Chess

' 40 legal con�g each turn
7 turns: 407 = 163, 840, 000, 000
if 100000 con�g/s, since epoch:
100000× 3600× 24× 366× 4.6× 109 ' 4014, 7 turns for
both players!

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Intelligence and Knowledge

Intelligence needs knowledge, which is by nature

huge

hard to de�ne precisely

subject to change in time

Conclusion:

Need for a representation model of knowledge

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Intelligence and Knowledge

Intelligence needs knowledge, which is by nature

huge

hard to de�ne precisely

subject to change in time

Conclusion:

Need for a representation model of knowledge

Introduction
to AI

Philippe
Laroque

Outline

Introduction

History
AI techniques

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Knowledge Representation

Desired features for knowledge representation:

general (apply in most cases)

understandable (by people who need it)

easily maintenable

can serve as a tool to improve knowledge about knowledge

Most common techniques:

state space

formal systems, as proposition calculus (PC(0)) and
predicate calculus (PC(1))

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Basic Notions

State: symbolic description of manipulated objects and
their properties, and relations between these objects at a
given time. Common data structures: lists, arrays, graphs,
databases...

Goal: the state of the system when the problem is solved

Operator: make state change. Describe atomic actions
needed to switch from state A to state B. De�ned by its
application domain. Common representations: functions,
rewriting rules, algorithms...

Problem solving

By applying rules that use operators, we start from an inital
state to the goal. Rules are �red following a given strategy: it's
a production system

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Basic Notions

State: symbolic description of manipulated objects and
their properties, and relations between these objects at a
given time. Common data structures: lists, arrays, graphs,
databases...

Goal: the state of the system when the problem is solved

Operator: make state change. Describe atomic actions
needed to switch from state A to state B. De�ned by its
application domain. Common representations: functions,
rewriting rules, algorithms...

Problem solving

By applying rules that use operators, we start from an inital
state to the goal. Rules are �red following a given strategy: it's
a production system

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Production system

Set of production rules. Left part de�nes the conditions for
applying the rule, right part describes actions to run if rule
is �red.

Data (or facts) base. Contains informations needed to
activate the actions. Dynamic structure: applying rules can
add information to the base.

Command strategy: de�nes how rules are �red according
to the base contents.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Command strategies

Contain criteria to choose rules in order to be as e�cient
as possible.

Induce state changes: need for exhaustivity, but risk of
combinatory explosion.

Heuristic functions can help avoid C.E. Good heuristic
functions demand good knowledge of the problem: no
general rule to �nd them.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Problem Analysis

Is the problem breakable into easier sub-problems?

Can some states be ignored/removed if search fails?

Must we �nd a �good� solution or the �best� solution?

Is the base coherent? Do we need all of the base all the
time?

May the user help the computer �nd the solution?

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

State space enumeration

State spaces can be represented by a directed graph where
states are vertices (nodes) and operators are edges.
Problem solving = �nd a path from initial state to goal state.
Actual building of the complete graph is seldom necessary:
implicitely de�ned by production rules
Important aspects:

search direction

order of enumeration

state representation

candidate rule selection

heuristic function de�nition

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Direction of search

forward search: starts from initial state. Fired rules have a
left part compatible with current state of the problem.
Right parts provide new states.

backward search (or backward chaining): starts from goal
state. Fired rules have a right part compatible with current
state of the problem. Left parts provide new states.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Direction choice criteria

Rules of thumb:

1 If there are n initial states and m goal states, choose
direction towards max(n,m)

2 From current state, choose direction with the lowest
branching factor

3 If system is interactive, choose direction that �ts best user
reasoning mode

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Order of enumeration

Breadth �rst: nodes are visited in the order in which they
are created. From current state, possible candidates are
states created by applying rules; they are placed in a queue
(FIFO).

Depth �rst: nodes are visited in the reverse order of their
creation; they are placed in a stack (LIFO).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Enumeration algorithms

Two lists are used: OPEN and CLOSED

OPEN contains known nodes waiting to be visited
CLOSED contains already visited nodes

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Breadth-�rst algorithm

1 Place initial node n0 in OPEN

2 if OPEN is empty, stop (failure)

3 get and remove �rst element of OPEN, call it n and add it
to CLOSED

4 if no successor to n, go to 2

5 append every successor si to the end of OPEN if it is not
already in OPEN or CLOSED (and initialize backpath
pointer si −→ n)

6 if one of the successors is the goal, stop (success): use
pointer chain to retrieve the solution path.

7 go to 2

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Example graph

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Notion of depth

For a tree: distance from root node

For a graph, recursive de�nition: depth of nearest ancestor
+ 1 (update necessary during traversal)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Depth-�rst algorithm

1 Place initial node n0 in OPEN

2 if OPEN is empty, stop (failure)

3 get and remove �rst element of OPEN, call it n and add it
to head of CLOSED (update depths if necessary)

4 if current depth exceeds max depth, go to 2

5 if no successor to n, go to 2

6 add every successor to the top of OPEN if not already in
CLOSED (update depths if necessary and initialize/set
associated pointers to n)

7 if one of the successors is the goal, stop (success): use
pointer chain to retrieve the solution path.

8 for vertices already in CLOSED, recompute depth of
successors

9 go to 2

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Path criteria

state switching involves certain operations: each edge has
an associated cost

Order of the visits can be determined to minimize global
cost of the solution

depth-�rst: the successors of current vertex are sorted on
this criterion

breadth-�rst: the wole set of nodes waiting to be visited is
sorted that way (ex. Dijkstra)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Example graph (2)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Dijkstra

No need for CLOSED, since nodes are only visited once

Principle:

OPEN initially contains all nodes
A distance from the source node is maintained
Each time a node is visited, that distance may be updated

This algorithm gives the shortest path under the condition
that no weight is negative

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Algorithm

OPEN <- all nodes
for each node i set d(i) =∞ except d(n0) = 0
while OPEN not empty

1 n <- remove-min(OPEN)

2 for each successor si of n

1 if d(si) > d(n) + w(n, si) then

1 d(si) <- d(n) + w(n, si)
2 update backpath pointer associated with si : si −→ n

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Notes on Dijkstra

Simple optimization: stop when n = goal

Performance:

Using adjacency matrices, O(V 2 + E)
For sparse graphs, using adjacency lists and a heap for
OPEN: O ((V + E) log(V))
using a Fibonacci heap: O (E + V .log(V))

Ford-Bellman can be used when some edges have a
negative weight but worse performance O(EV)

Sometimes, one only needs a �good� solution (not the
best), but faster: need for an evaluation function

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Evaluation function

two parts: f (n) = g(n) + h(n)

g(n) represents the cost of the path from initial state to
current state n

h(n) represents the cost of the path from current state to
goal state

from now on, the above formula stands for the cost of the
optimal path P containing n

optimal path property

∀n ∈ P, f (n) = f (n0)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Estimation functions

Since we ignore if n is on the optimal path, we estimate the
evaluation function: f̂ (n) = ĝ(n) + ĥ(n)

ĝ(n) represents the min. cost from n0 to n at the time n is

visited (can only be ≥ �nal value of g(n))

ĥ(n) estimates the cost from n to the goal assuming n is
on the optimal path.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Example graph (3)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

A*

1 Place n0 in OPEN. compute ĥ(n0) and set ĝ(n0) = 0. All
other ĝ =∞

2 if OPEN is empty, stop (failure)

3 remove from OPEN the vertex with minimal f̂ , call it n
and add it to CLOSED

4 if n is the goal, stop (success): use pointer chain to
retrieve the solution path.

5 For each successor si of n:

1 compute ĝ(n) + c(n, si)
2 if si is in OPEN or in CLOSED and

ĝ(n) + c(n, si) > ĝ(si), skip to next successor
3 remove si from OPEN and CLOSED if present
4 insert si in OPEN and update ˆg(si) and backpath pointer

6 go to 2

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Admissibility of A*

De�nition

An algorithm a is admissible if, for every graph representing a
possible problem, a �nds the optimal path

Theorem

A* is admissible if ∀n, ĥ(n) ≤ h(n) and

(∃δ > 0,∀n, si), c(n, si) > δ

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Admissibility of A*

De�nition

An algorithm a is admissible if, for every graph representing a
possible problem, a �nds the optimal path

Theorem

A* is admissible if ∀n, ĥ(n) ≤ h(n) and

(∃δ > 0, ∀n, si), c(n, si) > δ

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Basic notions
Production
Systems
Enumeration
algorithms

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Several notes about A*

It is possible to set g(n) to 0 systematically. We choose
then each time the vertex that minimizes ĥ in OPEN (or in
the successors of n � �hill climbing� strategy)

Concerning function h:

if h(n) = 0, search is guided by g

if g is null too, the search is random
if g(n) = 1, (id. depth) the search is breadth-�rst

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Solving problems by decomposition

The idea is to repeatedly break a problem into easier-to-solve
subproblems, until each subproblem is trivial.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

AND-OR Trees

Previous trees and graphs can be viewed as OR graphs: the
algorithm stops as soon as only one solution path is needed

AND-OR graphs and trees are suitable to search solutions
to breakable problems, such as: �to solve P, one has to
solve B and C, or D and E, or F�

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Standard representation

At a given level, there are only �OR� nodes or �AND� nodes:
add intermediate nodes

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Node types

�OR� nodes: solved if one of the children is solved

�AND� nodes: solved if all children are solved

Initial node (root) correponds to the formulation of the
problem

Terminal nodes are solved problems, non-terminal nodes
without successors are unsolved problems

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Production rule analogy

Problem decomposition can be represented with a rule of the
form

Q → A,B,C

which means �to solve Q, one must solve A, B and C�
A set of such rules is called a rule base. Initially solved problems
form the facts base.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Example

Rules base:
R1 : F → B,D,E
R2 : A→ D,G
R3 : A→ C ,F
R4 : X → B

R5 : E → D

R6 : H → A,X
R7 : D → C

R8 : A→ X ,C
R9 : D → X ,B

Facts base: {B,C}
Problem to solve: H

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Corresponding AND-OR tree

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Cost of a solution tree

As for classical �OR� trees, it is possible to use an evaluation
function h(n) to estimate the cost of a solution tree rooted at
current node:

1 if n is terminal, h(n) = 0

2 if n is a non-terminal �OR�,
h(n) = mini=1..k{c(n, si) + h(si)}

3 if n is a non-terminal �AND�,
h(n) = Σi=1..k{c(n, si) + h(si)}

4 if n is unsolved, h(n) is unde�ned

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

AND-OR
Trees

Game
Algorithms

Expert
Systems

Logics basics

Estimation of the evaluation
function

During search phase, h cannot be computed, only estimated
(using ĥ).
At each step of the search tree building phase, extrema vertices
fall into four categories:

1 terminals: ĥ(n) = 0

2 non-terminals whose successors have not yet been visited:
ĥ(n) is an estimation of the solution tree rooted at n.

3 non-terminals whose successors have been visited:

1 if n is an �OR� node: ĥ(n) = mini=1..k{c(n, si) + ĥ(si)}
2 if n is an �AND� node: ĥ(n) = Σi=1..k{c(n, si) + ĥ(si)}

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Game algorithms

Good application domain for AI:

They use a strategy whose accuracy can be easily
measured.

They demand some domain-speci�c knowledge to de�ne
heuristics leading to winning con�gurations.

In complex games, CE must de�nitely be avoided. To do so,
one must have:

1 A procedure to generate good movements in search space,
which must select the most �promising� moves.

2 A static evaluation function which measures the quality of
a given con�guration.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

1- and 2- player games

1-player games can use A* algorithm

2-player games often need an AND-OR graph-like
structure:

graph game

vertex, problem state game state

terminal node, solved problem winning con�guration

extremum vertex, unsolved problem loosing con�guration

OR vertex I's turn to play

AND vertex HE's turn to play

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Simultaneous moves

In the case of zero-sum games: choose by solving a set of
equations (J. von Neumann, 1928):

B1 B2 B3

A1 +3 -2 +2

A2 -1 0 +4

A3 -4 -3 +1

(same - negated payo� matrix for player

B)

Read: �if A plays 1 and then B plays 1 too, then A wins 3
(and B looses 3)�

Simple choice: A2 (worst case costs 1) and B2 (0 cost)

But A2 → B1 → A1 → B2: unstable!

By solving a set of equations, the system can be made
stable

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Example of stabilization

A's point of view: A3 will never be chosen because always worse
than A2.
B's point of view: B3 will never be chosen because always worse
than both B1 and B2.
A: Call p =def p(A1), then

If B plays B1 we get 3p − (1− p) = 4p − 1

If B plays B2 we get −2p
Hence −2p = 4p − 1⇒ p = 1

6 , and cost is 1
3

B: Call p =def p(B1), then

If A plays A1 we get −3p + 2(1− p) = −5p + 2

If A plays A2 we get p

Hence p = −5p + 2⇒ p = 1
3 , and gain is 1

3

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

MinMax Algorithm

Game tree developped to depth d : leaves are evaluated
using static evaluation function.

The algorithm tries to make I (usually, the computer) win:
I tries to maximise the evaluation function, HE tries to
minimize it (hence the name, MinMax)

Goal: anticipate several turns and evaluate best turn
according to d .

OR vertices are associated with MAX, AND vertex with
MIN

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Search space size

Exhaustive exploration of search space is not realistic

Example: connect4:

branching factor = 7
max depth = 42
con�gs = 742 ' 3.1035

assuming 108 con�gs visited per second:
1027s ' 3.1023h ' 1022days ' 3.1019years

Need to stop exploration at given depth d

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Principle of MinMax

1 Build search tree to depth d

2 Compute evaluation function v(n) on leaves

3 Bottom-up-compute values V (n) for internal nodes using
following rule:

V (n) = v(n) if n is an extremum
V (n) = maxi{V (si)} if n is a MAX vertex
V (n) = mini{V (si)}if n is a MIN vertex

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Example of evaluation function

For connect4:

let n1 be the number of �potential ones� (a token and 3
spaces in a row)

let n2 be the number of �potential twos� and n3 the
number of �potential threes�.

Since potential threes are of much greater value than
potential ones, give them higher weights, for instance
f (conf , player) = n1 + 5n2 + 50n3

Then v(conf) can be de�ned as follows:

v(conf) = f (conf , I)− f (conf ,HE)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

MinMax algorithm

function minimax(node, depth)
if node is a terminal node or depth = 0

return v(node)
if the adversary is to play at node
let α := MAXVAL //+ infinity
foreach child of node
α := min(α, minimax(child, depth-1))

else {we are to play at node}
let α := -MAXVAL
foreach child of node
α := max(α, minimax(child, depth-1))

return α

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

A Simple Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

A Simple Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

A simple Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

A simple Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Alpha-Beta: improvement to
MinMax

MinMax visits all of the search tree, which is not always
necessary

Alpha-Beta detects the possibility of cut-o�s in the tree

Two more variables:

α represents the minimum value MAX is sure to reach
β represents the maximum value MAX can hope to reach

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Alpha cuto� (MIN)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Beta cuto� (MAX)

Alpha-Beta algorithm
alphaBeta (n,d,α,β) { //α = −∞, β = +∞

if (d = 0) return v(n)
if ’HE’ plays {

for each child ci of n {
val = alphaBeta(ci,d-1,α, β)
if (val < β) β = val
if (α>=β) break

}
return β

} else { // ’I’ plays
for each child ci of n {

val = alphaBeta(ci,d-1,α, β)
if (val > α) α = val
if (α>=β) break

}
return α

}
}

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Example

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Expectable bene�t of alpha-beta

algorithm is heavily dependent upon the order in which
moves are searched.

If program always manages to pick best move �rst, e�ective
branching factor is equal to approximately the square root
of the expected branching factor (best possible case)

massive improvement: allows to search twice as deeply in
the same number of nodes:

√
n
h

=
(
n

1
2

)h
= n

h

2

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

MinMax
alpha-beta

Expert
Systems

Logics basics

Example of connect4

assuming a depth of 12 (6 turns for each player)

number of con�gs to examine with minmax:
712 ' 14billions

if 108 con�g visited per second: 2 minutes!

number of con�g to examine with alpha-beta (opt.):
76 = 117649, which takes approx. 1ms!

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Introduction to Expert Systems

Human-like reasoning, if limited knowledge domain

As humans, able to explain their conclusions

ES building in two phases:

1 Analysis: understand the underlying domain-speci�c
knowledge mechanisms.

2 Synthesis: program a machine to behave like a domain
expert

1 Structuring level
2 Conceptual level
3 Cognitive level

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Structuring level

Goal: model expert method using AI techniques. Need to
evaluate complexity, which roughly falls into three classes:

1 diagnosis systems: classify a situation using (constant)
descriptor(s) → propositional calculus

2 problem solving systems: input is parameterized by
variables. Find a series of legal transformations to �nd
correct values → 1st-order predicate calculus

3 planning systems: try to optimally execute a set of tasks
subject to a set of constraints. Most complex class,
because

1 constraint optimization
2 context dynamically evolves

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Conceptual level

De�nes the semantics of the language to express
knowledge (structuring level de�nes syntax).

Describes descriptors and predicates with which laws,
states and operators modelling knowledge will be de�ned.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Cognitive level

Uses the language de�ned in previous levels to represent
knowledge of the expert

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Components of an ES

Knowledge base: domain-speci�c. Describes manipulated
concepts, their relations, resolution strategies, particular
cases. Some uncertain knowledge can be probabilistically
de�ned

Fact base: current situation of the system. Can contain
proven facts or facts to prove (goals).

Inference engine: process which solves the problem
speci�ed by input facts of the FB, using knowledge
contained in the KB.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Operating mode of an IE

Most of the time, KB contains production rules.

Each rule contains a condition part and a body (describes
the e�ects of �ring the rule).

IE runs several evaluation-execution cycles.

evaluation phase determines candidate rules after current
state of FB;
execution phase updates FB after �ring the rule.

IE stops if no candidate rule in evaluation phase (or in
execution phase, on an explicit stop statement)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Contents of evaluation phase

restriction: according to current state of problem, select a
subset of FB and a subset of KB (optional).

pattern-matching: condition part of rules of KB are
compared to facts of FB (systematic).

con�ict resolution: determines actual subset of rules that
will be �red (optional; for instance, if two rules have the
same �condition� part and lead to contradictory �body�
parts: can rely on a measure of con�dence in rules to
choose which rule to �re)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Contents of execution phase

IE executes body part of selected rules. When the rule set is
empty,

1 either IE stops (in simple cases)

2 or IE de�nes a new subset by reconsidering the set of rules
elaborated during pattern matching

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Performance of an ES

Solving a problem involves chaining several cycles, called
inference cycles.

The number of inference cycles per time unit (LIPS:
Logical Inferences Per Second) is one of the performance
indicators for 5th generation computers.

IE can work using forward and/or backward chaining

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Forward chaining

IE starts from proven facts to �nd the solution

When condition (left) part of a rule is is FB, its right part
is added to FB (which thus only contains proven facts)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Backward chaining

IE starts form goal and �nds needed facts to prove it
(AND-OR tree)

Matching operates on right parts of the rules: when right
part of a rule is in FB, its left part is added to FB

Initial problem is solved when every problem it depends on
is solved (i.e. is in FB)

NB: some IE use mixed chaining, according to context.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Introduction
structure

Logics basics

Monotonous mode

An SE runs in monotonous mode if

1 no knowledge (rule or proven fact) can be removed;
2 new knowledge never induces contradiction

Most PC(0) and PC(1) systems are monotonous

In non-monotonous systems, �ring a rule can modify KB
(and even RB)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Brief History

4th c. BC: Aristote (variable, quantization, terms),
stoïcists (Modus ponens p ∧ (p ⇒ q) ` q, modus tollens
¬q ∧ (p ⇒ q) `¬p):
13th c.: Scholastic logic (G. d'Occam - Entia non sunt

multiplicanda praeter necessitatem1, ...)

15th c.: stagnation (exception: Leibniz, thinking=calculus
on signs: step from thought → speech → writing to
writing → thought)

1850: Boole, de Morgan

20th c.: Peano (axiomatization), Russel (Principia
Mathematica), Hilbert (problem of the non-contradiction
of mathematics), Gödel (1931: incompleteness)...

1Occam's razor: do not use new hypotheses as existing ones are
su�cient (principle of economy)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

De�nition of a FS

a FS S is made of

An alphabet Σ, �nite or countable, numbered

A recursive2 subset F ⊆ Σ∗ called the well-formed

formulas of S .

A recursive subset A ⊆ F called the axioms of S .

A �nite set R of decidable predicates de�ned on F , called
the inference rules of S .

Notation: f1, ..., fn `r g rather than r(f1, ..., fn, g)

2One can build a program that, given a formula f, says wether f is
well-formed or not

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Example

Σ = {1,+,=}
F = {1+ + 1+ = 1+}
A = {1 + 1 = 11}

R =

{
1n + 1m = 1p `r1 1n+1 + 1m = 1p+1

1n + 1m = 1p `r2 1n + 1m+1 = 1p+1

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Deduction and theorem

Let (hi) ⊆ F be a set of formulas called hypotheses

De�nition

a Deduction from (hi) is a �nite family (fi) in F such as

fi ∈ A, or

fi ∈ (hi), or

∃(fj) ⊆ (fi),∃rk ∈ R/(fj) `rk fi

A Theorem is a deduction from ∅. The set of S 's theorems is
called TS

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

A simple analogy: chess

Σ: chessboard and �gures

F : con�gurations of �gures on chessboard

A: initial con�guration

T : allowed con�gurations

R : rules of chess game

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Theorem and truth

Attention

No necessary coincidence between de�nition of the theorems
and the interpretation human mind makes from formulas

What is known to be true can not be a theorem
(completeness problem)

A theorem can not re�ect a reality of our interpretation
(consistency problem)

Ex: 1 + 1 + 1 = 111 is �intuitively� true, but is no theorem (nor
a w�)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Properties of a FS

De�nition

A FS is Coherent if T 6= F

A FS is Decidable if T is recursive

A FS is Consistent if there is no w� f ∈ F/f ∈ T ,¬f ∈ T

Gödel's theorem: one cannot prove the consistency of a
�complex�3 FS, but with tools more powerful than the FS itself.
Moreover, if a FS is consistent and its theorems are all �true�,
then there exist arithmetical formulas that are true and are not
theorems of the FS.
There are FS in which T is not recursive (automatic proof pb)

3including arithmetics

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

Let S be de�ned with

Σ = {A,B,C}
F = {AnBCm(n,m ≥ 0)}
A = {A2iBC2i , (i ≥ 0)}
R ={

AnBCm

An′BCm′

}
` An+n′BCm

}

1 Prove that A6BC2and
A10B are theorems of S

2 Characterize T and show
that any theorem can be
derived in at most 3 steps

3 Show that if any axiom is
removed, T is changed

4 Give a FS with same
Σ,F ,T , only 1 axiom and
2 inference rules

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

Let S be de�ned with

Σ = {A,B,C}
F = {AnBCm(n,m ≥ 0)}
A = {A2iBC2i , (i ≥ 0)}
R ={

AnBCm

An′BCm′

}
` An+n′BCm

}

1 Prove that A6BC2and
A10B are theorems of S

2 Characterize T and show
that any theorem can be
derived in at most 3 steps

3 Show that if any axiom is
removed, T is changed

4 Give a FS with same
Σ,F ,T , only 1 axiom and
2 inference rules

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Solution

Let's call Fn,m the formula AnBCm. Axioms are thus
A = {Ai = F2i ,2i}

1 A1,A2 ` F6,2 and A0,A10 ` F10,0
2 T = {Ti ,j = F2i ,2j , 0 ≤ j ≤ i}. Steps: 1/ Ai , 2/ Ai−j , 3/

Aj ,Ai−j `r Ti ,j

reciprocal: let Fi ,j ∈ T then i < j is impossible: we would
have Fi−j ,0 ∈ T and i − j < 0, which is not in F . So i ≥ j .
Then Fi−j ,0 ∈ T (appl. of R), and thus (i − j) and j are
even: OK

3 A′ = A− {Ai = Ti ,i}: Ti ,i cannot be proven any more

4 A = {A0}, r1 = r , AnBCn `r2 An+2BCn+2

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

PC(0)

Σ(0) = {P1, ...,Pn, ...} ∪ {¬,∧,∨,⇒,⇔} ∪ {T ,F}4

F (0) =<WFF>=<P> | ¬<WFF> |
(<WFF><BCon><WFF>)

A(0) =
A1 (p ⇒ (q ⇒ p))
A2 ((p ⇒ (q ⇒ r))⇒ ((p ⇒ q)⇒ (p ⇒ r)))
A3 ((¬p ⇒ ¬q)⇒ (q ⇒ p))

R(0) = MP

4¬and ⇒are su�cient

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))
((p ⇒ q) ∧ (¬p ⇒ r))
A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)
A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p
MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))
A1 (p ⇒ (p ⇒ p)) q : p
MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))

((p ⇒ q) ∧ (¬p ⇒ r))
A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)
A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p
MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))
A1 (p ⇒ (p ⇒ p)) q : p
MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))
((p ⇒ q) ∧ (¬p ⇒ r))

A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)
A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p
MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))
A1 (p ⇒ (p ⇒ p)) q : p
MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))
((p ⇒ q) ∧ (¬p ⇒ r))
A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)

A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p
MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))
A1 (p ⇒ (p ⇒ p)) q : p
MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))
((p ⇒ q) ∧ (¬p ⇒ r))
A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)
A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p

MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))
A1 (p ⇒ (p ⇒ p)) q : p
MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))
((p ⇒ q) ∧ (¬p ⇒ r))
A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)
A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p
MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))

A1 (p ⇒ (p ⇒ p)) q : p
MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))
((p ⇒ q) ∧ (¬p ⇒ r))
A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)
A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p
MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))
A1 (p ⇒ (p ⇒ p)) q : p

MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercises

Show that ¬ and ⇒ are su�cient

Model (p?q : r)

Proove (p ⇒ p)

p ∨ q : (¬p ⇒ q),p ∧ q : ¬ (p ⇒ ¬q),(p ⇔ q) :
¬ ((p ⇒ q)⇒ ¬(q ⇒ p))
((p ⇒ q) ∧ (¬p ⇒ r))
A1 (p ⇒ ((p ⇒ p)⇒ p)) q : (p ⇒ p)
A2 ((p ⇒ ((p ⇒ p)⇒ p))⇒ ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))) q : (p ⇒ p), r : p
MP ((p ⇒ (p ⇒ p))⇒ (p ⇒ p))
A1 (p ⇒ (p ⇒ p)) q : p
MP (p ⇒ p)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Interpretation

De�nition

An interpretation i is an application

i : {P1, ...,Pn} → {T ,F}

By extension, concept of interpretation of a formula f ∈ F (0)

f ∈ F (0) is consistent if ∃i , i(f) = T

f ∈ F (0) is valid (or is a tautology) if ∀i , i(f) = T

(notation |= f)

c is a logical consequence of h: if i(h) = T , then i(c) = T .
Notation h |= c (tautologies are logical consequences of ∅).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Properties of an axioms schema

An AS is consistent if ∀f , if ` f then |= f (everything that
is demonstrable is true)

An AS is complete if ∀f , if |= f then ` f (everything that
is true is demonstrable)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Validity of a formula

Always decidable, BUT

N variables give 2N distinct interpretations

Simpli�cation algorithms exist, but ine�cient (except
clause resolution)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Principle of Deduction

De�nition

c is a logical consequence of a set of hypotheses if and only if
adding ¬c to this set makes it inconsistent :

(hi) |= c ”⇐⇒ ” (hi) ∪ {¬c} |= F

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Principle of uniform substitution

De�nition

Let t be a tautology, p a proposition of t and f a formula. Let

t ′ = σ(t, p, f)

be the formula obtained when replacing every occurrence of p in
t with f .
Then t ′ is a tautology

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Clause and clausal form

De�nition

A literal is either a proposition, or its negation.

A clause is a �nite disjunction of literals (empty clause is
writen ∅).
A normal conjunctive form (NCF) is a �nite conjunction of
clauses

<L> = <P> | ¬<P>
<C> = <L> [∨<L>]* | ∅
<NCF> = <C> [∧<C>]*

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Formulas and NCF

Theorem

Any fomula of F (0) has an equivalent NCF

Proof.

(by construction):

1 transform ⇔ into (⇒,∧) pairs

2 transform p ⇒ q into ¬p ∨ q
3 put ¬ inside formulas, remove ¬¬

4 distribute ORs:

{
p ∨ (q ∧ r) −→ (p ∨ q) ∧ (p ∨ r)
(p ∧ q) ∨ r −→ (p ∨ r) ∧ (q ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Notes about NCF

Any clause containing a literal and its negation is valid (no
other valid clause), and can be removed from the NCF

A �pure� NCF contains at most 1 occurrence of any literal

If one clause of an NCF is a subclause of another, the
latter can be removed

If ∅ is in a NCF, the NCF is inconsistent

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

put ((p ⇒ (q ⇒ r))⇒ ((p ∧ s)⇒ r)) into NCF

(¬ (p ⇒ (q ⇒ r)) ∨ ((p ∧ s)⇒ r))
(¬ (¬p ∨ (¬q ∨ r)) ∨ (¬(p ∧ s) ∨ r))
((¬¬p ∧ (¬¬q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
((p ∧ (q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
(p ∨ ¬p∨¬s ∨ r) ∧ (q ∨ ¬p ∨ ¬s ∨ r) ∧ (¬r ∨ ¬p ∨ ¬s ∨ r)
(q ∨ ¬p ∨ ¬s ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

put ((p ⇒ (q ⇒ r))⇒ ((p ∧ s)⇒ r)) into NCF
(¬ (p ⇒ (q ⇒ r)) ∨ ((p ∧ s)⇒ r))

(¬ (¬p ∨ (¬q ∨ r)) ∨ (¬(p ∧ s) ∨ r))
((¬¬p ∧ (¬¬q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
((p ∧ (q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
(p ∨ ¬p∨¬s ∨ r) ∧ (q ∨ ¬p ∨ ¬s ∨ r) ∧ (¬r ∨ ¬p ∨ ¬s ∨ r)
(q ∨ ¬p ∨ ¬s ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

put ((p ⇒ (q ⇒ r))⇒ ((p ∧ s)⇒ r)) into NCF
(¬ (p ⇒ (q ⇒ r)) ∨ ((p ∧ s)⇒ r))
(¬ (¬p ∨ (¬q ∨ r)) ∨ (¬(p ∧ s) ∨ r))

((¬¬p ∧ (¬¬q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
((p ∧ (q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
(p ∨ ¬p∨¬s ∨ r) ∧ (q ∨ ¬p ∨ ¬s ∨ r) ∧ (¬r ∨ ¬p ∨ ¬s ∨ r)
(q ∨ ¬p ∨ ¬s ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

put ((p ⇒ (q ⇒ r))⇒ ((p ∧ s)⇒ r)) into NCF
(¬ (p ⇒ (q ⇒ r)) ∨ ((p ∧ s)⇒ r))
(¬ (¬p ∨ (¬q ∨ r)) ∨ (¬(p ∧ s) ∨ r))
((¬¬p ∧ (¬¬q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))

((p ∧ (q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
(p ∨ ¬p∨¬s ∨ r) ∧ (q ∨ ¬p ∨ ¬s ∨ r) ∧ (¬r ∨ ¬p ∨ ¬s ∨ r)
(q ∨ ¬p ∨ ¬s ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

put ((p ⇒ (q ⇒ r))⇒ ((p ∧ s)⇒ r)) into NCF
(¬ (p ⇒ (q ⇒ r)) ∨ ((p ∧ s)⇒ r))
(¬ (¬p ∨ (¬q ∨ r)) ∨ (¬(p ∧ s) ∨ r))
((¬¬p ∧ (¬¬q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
((p ∧ (q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))

(p ∨ ¬p∨¬s ∨ r) ∧ (q ∨ ¬p ∨ ¬s ∨ r) ∧ (¬r ∨ ¬p ∨ ¬s ∨ r)
(q ∨ ¬p ∨ ¬s ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

put ((p ⇒ (q ⇒ r))⇒ ((p ∧ s)⇒ r)) into NCF
(¬ (p ⇒ (q ⇒ r)) ∨ ((p ∧ s)⇒ r))
(¬ (¬p ∨ (¬q ∨ r)) ∨ (¬(p ∧ s) ∨ r))
((¬¬p ∧ (¬¬q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
((p ∧ (q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
(p ∨ ¬p∨¬s ∨ r) ∧ (q ∨ ¬p ∨ ¬s ∨ r) ∧ (¬r ∨ ¬p ∨ ¬s ∨ r)

(q ∨ ¬p ∨ ¬s ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

put ((p ⇒ (q ⇒ r))⇒ ((p ∧ s)⇒ r)) into NCF
(¬ (p ⇒ (q ⇒ r)) ∨ ((p ∧ s)⇒ r))
(¬ (¬p ∨ (¬q ∨ r)) ∨ (¬(p ∧ s) ∨ r))
((¬¬p ∧ (¬¬q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
((p ∧ (q ∧ ¬r)) ∨ ((¬p ∨ ¬s) ∨ r))
(p ∨ ¬p∨¬s ∨ r) ∧ (q ∨ ¬p ∨ ¬s ∨ r) ∧ (¬r ∨ ¬p ∨ ¬s ∨ r)
(q ∨ ¬p ∨ ¬s ∨ r)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Principle of resolution

Let f be a NCF, c1, c2 two clauses of f , l a literal. If{
l ∈ c1
¬l ∈ c2

, then r = c1 − {l} ∪ c2 − {¬l} is the resolvent

clause of c1and c2.

In this situation, f and f ∪ {r} are equivalent: it is the
basis for the resolution algorithm.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Resolution algorithm

while ∅ /∈ f

choose l , c1, c2/

{
l ∈ c1
¬l ∈ c2

if impossible exit(failure)
compute r

replace f with f ∪ {r}

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

show that p is a logical consequence of
(p ∨ q) ∧ (p ∨ r) ∧ (¬q ∨ ¬r)
We then try to show that
f = {(p ∨ q)(1), (p ∨ r)(2), (¬q ∨ ¬r)(3),¬p(4)} is inconsistent.

automatic:
5:p ∨ ¬r (1,3)
6:q (1,4)
7:p ∨ ¬q (2,3)
8: r (2,4)
9: p (2,5)
...
13:¬q (4,7)
14:∅ (4,9)

manual:
5: q (1,4)
6: r (2,4)
7: ¬r (3,5)
8: ∅ (6,7)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

show that p is a logical consequence of
(p ∨ q) ∧ (p ∨ r) ∧ (¬q ∨ ¬r)
We then try to show that
f = {(p ∨ q)(1), (p ∨ r)(2), (¬q ∨ ¬r)(3),¬p(4)} is inconsistent.

automatic:
5:p ∨ ¬r (1,3)
6:q (1,4)
7:p ∨ ¬q (2,3)
8: r (2,4)
9: p (2,5)
...
13:¬q (4,7)
14:∅ (4,9)

manual:
5: q (1,4)
6: r (2,4)
7: ¬r (3,5)
8: ∅ (6,7)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

Proove the �case disjunction�: if a (true) hypothesis implies a
disjunction, and each member of the disjunction imply the same
conclusion, then the conlusion is true:
{h, h⇒ (p ∨ q), p ⇒ c , q ⇒ c} |= c

f = {h(1),(¬h ∨ p ∨ q)(2), (¬p ∨ c)(3), (¬q ∨ c)(4),¬c(5)}
6: p ∨ q (1,2,h)
7: ¬p (3,5,c)
8: ¬q (4,5,c)
9: q (6,7,p)
10: ∅(8,9, q).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

Proove the �case disjunction�: if a (true) hypothesis implies a
disjunction, and each member of the disjunction imply the same
conclusion, then the conlusion is true:
{h, h⇒ (p ∨ q), p ⇒ c , q ⇒ c} |= c

f = {h(1),(¬h ∨ p ∨ q)(2), (¬p ∨ c)(3), (¬q ∨ c)(4),¬c(5)}

6: p ∨ q (1,2,h)
7: ¬p (3,5,c)
8: ¬q (4,5,c)
9: q (6,7,p)
10: ∅(8,9, q).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Exercise

Proove the �case disjunction�: if a (true) hypothesis implies a
disjunction, and each member of the disjunction imply the same
conclusion, then the conlusion is true:
{h, h⇒ (p ∨ q), p ⇒ c , q ⇒ c} |= c

f = {h(1),(¬h ∨ p ∨ q)(2), (¬p ∨ c)(3), (¬q ∨ c)(4),¬c(5)}
6: p ∨ q (1,2,h)
7: ¬p (3,5,c)
8: ¬q (4,5,c)
9: q (6,7,p)
10: ∅(8,9, q).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Horn clauses

De�nition

A Horn clause is a clause which contains at most 1 positive
literal.

Base for �if then conclusion�

If no hypothesis, the clause is called a fact

Advantage: resolution algorithm is simpler

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Resolution algorithm for Horn
clauses

while ∅ /∈ f

choose p, c/¬p ∈ c

if impossible exit(failure)
replace f with f − c ∪ (c − {¬p})

NB: always terminate, since 1 literal less at each iteration

If N literals in f , C = O
(
N2
)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

PC(1) I

Σ(1) = {x , y , ...} (variables: <var>)
∪{a, b, ...} (individual constants <var>)
∪{f , g , ...} (functional constants <fct>)
∪{p, q, ...} (predicate constants <pct>)
∪{∨,∧,⇒,⇔} (binary logical connectors <blc>)
∪{∃, ∀} (quanti�ers <q>)
∪{¬}
F (1) :<wff> = <at> | ¬<wff> |
(<wff><blc><wff>) | (<q><var>)<wff>
<at> = <pf> | (<t> = <t>)
<t> = <var> | <ff>
<ff> = <fct>([<t>[,<t>]*]?)
<pf> = <pct>([<t>[,<t>]*]?)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

PC(1) II

A(1) = A(0) (except formulas in F (1)), plus:
(∀x , p(x))⇒ p(t)(any term)
((p ⇒ q)⇒ (p ⇒ (∀x , p(x)))) (x is not free in p)

R(1) = MP+
A ` (∀x ,A) (generalization rule)

NB: T (1) is not recursive (an in�nity of possible interpretations
for formulas)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Bound variables

De�nition

Let Vb(f) be the set of �bound� variables of formula f . It is
de�ned constructively:

Vb(< at >) = ∅
Vb(f ⇒ g) = Vb(f) ∪ Vb(g)

Vb(¬f) = Vb(f)

Vb(∀x , f) = Vb(f) ∪ {x}

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Free variables

De�nition

Let Vf (f) be the set of �free� variables of formula f . It is
de�ned constructively:

Vb(< at >) = V (< at >)

Vf (f ⇒ g) = Vf (f) ∪ Vf (g)

Vf (¬f) = Vf (f)

Vf (∀x , f) = Vf (f)− {x}

A formula without any free variable is said to be CLOSED

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Examples

p(f (x , y)) ∨ (∀z , r(a, z))
Vb = {z}, Vf = {x , y}
(∀x , p(x , y , z)) ∨ (∀z , (p(z)⇒ r(z)))
Vb = {x , z}, Vf = {y , z}
∀x , ∃y , (p(x , y)⇒ (∀z , r(x , y , z)))
Vb = {x , y , z}, Vf = ∅

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Substitution

De�nition

A substitution is an application

σ : < var >−→< t >

x 7−→ t

σ is said to be �nite if σ(x) = x almost everywhere.
By extension: σ(t) is the term obtained by replacing each
variable in t with its image by σ

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Example

Example

σ = {(x , f (x)), (y , g(x , z))}, t = g (f (x), g (f (z), y)) gives
σ(t) = g (f (f (x)) , g (f (z), g(x , z)))

NB: ◦(composition law of substitutions) is internal in <t>,
associative and has a neutral element, the identity (it's a
monoïd)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Instanciation

De�nition

Let t1, t2 be two terms. t2 is an instance of t1 if ∃σ, t2 = σ(t1).
If V (t) = ∅, t is said to be completely instanciated.
A formula f is valid i� all of its instances are valid.
A formula f is consistent i� one of its instances is consistent.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Prenex form

De�nition

A sentence is in prenex form if all its quanti�ers come at the
very start, i.e., no quanti�ers are within the scope of a
truth-functional connective.

Theorem

Any formula has a prenex form which is equivalent

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Equivalent prenex form

Proof.

By construction:

1 eliminate ⇔ and ⇒
2 rename bound variables until Vb ∩ Vf = ∅
3 remove useless quanti�ers

4 put ¬ as close as possible to <pct>: ¬∀x , p −→ ∃x ,¬p,
¬(p ∧ q) −→ (¬p ∨ ¬q), etc.

5 reject quanti�ers to the beginning of the formula:
(∀x , p ∧ ∀x , q) −→ ∀x , (p ∧ q)
((∀x , p)∧ q) −→ ∀x , (p ∧ q) (if q does not contain x), etc.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Example

∀x (p(x) ∧ ∀y , ∃x (¬q(x , y)⇒ ∀z , r(a, x , y)))
∀x (p(x) ∧ ∀y , ∃x (¬¬q(x , y) ∨ ∀z , r(a, x , y)))
∀x (p(x) ∧ ∀y , ∃u (q(u, y) ∨ ∀z , r(a, u, y)))
∀x∀y (p(x) ∧ ∃u (q(u, y) ∨ r(a, u, y)))
∀x∀y∃u (p(x) ∧ (q(u, y) ∨ r(a, u, y)))
NB: the prenex form is not unique

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

NCF in CP(1)

<lit> = <at> | ¬<at>
<cl> = <lit> [∨ <lit>]*
<ncf> = <qf>* (<cl> [∧ <cl>]*)
<qf> = <q> <var>

Theorem

Any w� has a ncf which is equivalent

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Skolemization

Further simpli�cation of a ncf.

Principle:

1 Replace any existencially-quanti�ed variable with a
function of the universally-quanti�ed variables than come
before it in the formula

2 Remove all occurrences of ∀ (all variables are implicitly
universally quanti�ed)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Example of skolemization

Example

∀x (p(x) ∧ ∀y , ∃x (¬q(x , y)⇒ ∀z , r(a, x , y))) gives the ncf
∀x∀y∃u (p(x) ∧ (q(u, y) ∨ r(a, u, y))) which is �skolemized� in
(p(x) ∧ (q(f (x , y), y) ∨ r(a, f (x , y), y)))

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Uni�cation

De�nition

Uni�cation is resolution applied to skolem forms. It is the basic
mechanism of PROLOG

Principle:

c1, c2/c1 3 l1, c2 3 ¬l2, V (c1) ∩ V (c2) = ∅ (possibly after
some renaming) and l1 and l2 are uni�able (i.e. they have
a common instance).

Consider c ′1, c
′
2/l
′
1 = l ′2 = l ′ and r = (c ′1 − {l ′} ∪ c ′2 − {l ′}

Then f ∪ r is a logical consequence of f

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Algorithm

while ∅ /∈ f

choose l1, l2, c1, c2/

{
l1 ∈ c1
¬l2 ∈ c2

and (l1, l2)

unifiable
if impossible exit(failure)
compute r

replace f with f ∪ {r}

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Introduction to PROLOG

Uni�cation between skolemized Horn clauses of PC (1)

The positive literal is separated from the other (negative)
literals with a �`� sign (�if�)

Example: compute the gcd of two positive integers x and y

if x is equal to y , the result is x
if x is greater (resp. less) than y , the result is the same as
the gcd of (x − y) and y (resp. x and (y − x)).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

PROLOG-like notation

Let's write gcd(X ,Y ,Z) for �Z is the gcd of X and Y �. We
get 3 clauses:

1: gcd(X,X,X). % variables are in uppercase in PROLOG
2: gcd(X,Y,Z) ` X>Y, gcd(X-Y,Y,Z).
3: gcd(X,Y,Z) ` Y>X, gcd(X,Y-X,Z).

Attention

Expressions in predicates must be �matchable�:
Rule 2 for instance must be written
gcd(X,Y,Z) ` X>Y, DIFF is X-Y,
gcd(DIFF,Y,Z).

Let's compute the gcd of 4 et 6: we add the goal
`gcd(4,6,Z).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Derivation Example

4: gcd(4,6,Z)
5: gt(6,4),gcd(4,2,Z) // 3:X=4,Y=6
6: gt(4,2),gcd(2,2,Z) // 2:X=4,Y=2
7: ∅ // 1:X=2,Z=2

So gcd(4, 6) = 2 (�nal value of Z)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Derivation tree

The goal is matched against the goal part of each rule

If a rule matches, all its hypotheses are added as subgoals

This leads to a tree-like structure (the derivation tree)
which is visited using a depth-�rst, left-handed method:
the order in which rules are written is signi�cant!

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Simple example

Program P cl. #

p(a). 1

p(X) :- q(X),r(X). 2

p(X) :- u(X). 3

q(X) :- s(X). 4

r(a). 5

r(b). 6

s(a). 7

s(b). 8

s(c). 9

u(d). 10

We want to see what happens for
goal `p(X).:

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Uni�cation in PROLOG

depth-�rst traversal of derivation tree

if left-most subgoal uni�es with head of side clause, then
the subgoal is replaced with the body of the side clause:

g1,g2,...
h :- b1,b2,...
--------- // if g1 unifies with h
b1,b2,...,g2,...

N.B.: some variables in (bi) and (gj) have been bound
during uni�cation

If the tail of a rule is empty (bi) = ∅ then subgoal g1 can
be removed

When all subgoals are removed along a path, a �yes� is
generated

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Simple examples

?- p(X,f(Y),a) = p(a,f(a),Y).
X = a Y = a
?- p(X,f(Y),a) = p(a,f(b),Y).
No
?- p(X,f(Y),a) = p(Z,f(b),a).
X = _G182 Y = b Z = _G182
?- p(X,f(Y),a) = p(Z,f(b),a), X is d.
X = d Y = b Z = d

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Several built-in PROLOG goals

trace, notrace

true, fail

[fileName] loads �leName.pl (syn.
consult(’fileName.pl’))

Numerical comparisons < <= >= >

is : logical variable (numerical) binding

Type predicates integer(X), real(X), string(X)...

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Examples (2)

matching and equality: = \= == \==

?- [X,Y|R] = [a,b,c]
X = a, Y = b, R = [c]
?- [X,Y,Z] = [a,b]
No

call(P) forces P to be a goal; same success/failure

! cut predicate

not as if de�ned by (exercise after cut def.)

not(P) :- call(P), !, fail.
not(P).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

The �!� (cut) predicate

branches of the derivation tree preceeding the �!� are
eliminated from the backtrack process

Variables bound at the time the �!� is encountered stay
bound to the same value

Ex: previous set of clauses, and goals �p(X),!.�,
�r(X),!,s(Y).� and �r(X),s(Y),!.�:

?- p(X),!.
X = a ;
No
?- r(X),s(Y).
X = a Y = a ;
X = a Y = b ;
X = a Y = c ;
...
X = b Y = c ;
No

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

The cut operator (2)

?- r(X),!,s(Y).
X = a Y = a ;
X = a Y = b ;
X = a Y = c ;
No
?- r(X),s(Y),!.
X = a Y = a ;
No

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

The cut operator (3)

red(a). black(b).
color(P,red) :- red(P),!.
color(P,black) :- black(P),!.
color(_,unknown).

What happens if no �!� ? (examine color(X,red) and
color(a,Y))5

What happens to goal p(X) if clause #2 is replaced with
p(X) :- q(X), !, r(X)?

?- p(X).
X = a ? ;
X = a
yes

5respectively �a� then �No�, and �red� then �unknown�

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Hanoi towers

Simple example of recursion: move N disks from pin p1 to
pin p2 using pin p3, with a constraint: a larger disk can
never be placed above a narrow one.

Predicate: hanoi(N, from, to, using)

hanoi(1,I,F,_) :-
format(“moving from %d to %d\n”,[I,F]).

hanoi(N,I,F,AUX) :- N>1,
N1 is N-1,
hanoi(N1,I,AUX,F),
hanoi(1,I,F,AUX),
hanoi(N1,AUX,F,I).

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Outline
1 Introduction to the basic techniques of AI

History
AI techniques

2 Searching in a state space
Basic notions
Production Systems
Enumeration algorithms

3 Solving Problems by Decomposition
AND-OR Trees

4 Game Algorithms
MinMax Algorithm
Alpha-Beta Algorithm

5 Expert Systems
Introduction
Structure of a ES

6 Logics basics
Formal systems
Propositional calculus PC(0)
First-order predicate calculus PC(1)
Introduction to PROLOG
Introduction to fuzzy logic

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Brief history

Original paper: L.A. Zadeh 65

Fuzzy logic & neural networks: E. Mamdani (1973)

1st �fuzzy� VLSI: 1989

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Principle and applicability

Idea: switch from binary, �true/false� logic to a measure of
uncertainty in truth

Base: theory of sets −→ continuum of grades of
membership (membership function in [0, 1])

Accurate if

very complex process without simple mathematical model
non-linearity
must deal with linguistic, human expert knowledge

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

De�nitions

De�nitions

fuzzy set: set of pairs (x , µ(x)) where µ takes values in [0, 1]
linguistic variable: variable which represent process / control
state, and whose value are de�ned in linguistic terms
linguistic value: fuzzy set mapping crisp values to degree of
membership to this value of the linguistic variable
universe of discourse: set of possible linguistic values

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Relationships

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Example

Example

T(emperature) = { negative big, negative medium, negative
small, close to zero, positive small, positive medium, positive
big }

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Operators

Several possible sets of operators. Most common:

µ(¬p) = 1− µ(p)
µ(p ∨ q) = max(µ(p), µ(q)) (algebraic sum,...)
µ(p ∧ q) = min(µ(p), µ(q)) (algebraic product,...)

Hedges (modi�ers):

very: µ(very(x)) =def µ(x)2

more or less: µ(mol(x)) =def

√
µ(x)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Linguistic rules

Two parts, antecedent (premise): if ..., and
consequent: then ...

µ(cons) =def µ(premise)

Fuzzy controller: set of fuzzy linguistic rules.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Structure of a classical fuzzy system

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Classical steps

1 Fuzzi�cation: measure of input variable −→ degree of
membership for every fuzzy set of the universe of discourse

2 Computation of each rule �ring strength (or weight) using
operators (min)

3 Generation of consequent value for each rule and
computation of µC (z)

4 Defuzzi�cation: generation of the crisp output value(s)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Types of fuzzy reasoning

Tsukamoto: if output membership function is increasing,
then the overall output can be a weighted average of
generated crisp output values

Lee: operation MAX on the quali�ed fuzzy outputs, overall
output is the center of gravity (most common)

Takagi and Sugeno: each rule's output is a linear
combination of input variables; overall crisp output is their
weighted average

...

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Concrete application example

Fuzzy air-conditioned system (Mitsubishi) handling
weather changing conditions

50 rules, 6 linguistic variables (room and wall temperature,
...)
prototype: 4 man.days, tests and integration: 20
man.days, optimization: 80 man.days
implemented on a standard micro-controller
results: startup process time reduced by 40%, much more
robust to interferences (window opening...), less sensors,
24% energy saved.

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

A simple but complete example
Drawn from the mathworks site
(http://www.mathworks.com):
the system computes the tip to give after

quality of food

quality of service

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Step 1: fuzzi�cation

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Combining operators

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Step 2: Firing rules

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Step 4: Output aggregation

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Step 5: defuzzi�cation

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Bibliography I

Colmerauer, A. �Prolog in 10 �gures�, in Communications
of the Association for Computing Machinery,
28(12):1296-1310, 1985

Kleene, S. C. �Mathematical Logic�, New York: Dover,
2002.

C.C. Lee , �Fuzzy logic in control systems: fuzzy logic
controller - part 1 & 2�, IEEE Trans. on Systems, Man and
Cybernetics, 20 (2), pp 404�435, 1990.

Levy, David N.L. �How Computers Play Chess, New York�,
Computer Science Press, 19916

J. McCarthy, �A Basis for a Mathematical Theory of
Computation�, in Computer Programming and Formal
Systems, North Holland, 1961

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Bibliography II

E. Mamdani, S. Assilian, �An experiment in Linguistic
Synthesis with a Fuzzy Logic Controller�, Int. Journal on
Man-Machine Studies, 7, 1973, pp 1�13.

Minsky, M. �The Society of Mind�, Simon & Schuster
(March 15, 1988)

A. Newell & H. Simon, �The Theory of Human Problem
Solving�, reprinted in Collins & Smith (eds.), Readings in
Cognitive Science, section 1.3.

N.J. Nilsson �Principles of Arti�cial Intelligence�, Tioga
Publishing Co., 19807

Papert, S. �Mindstorms: Children, Computers, and
Powerful Ideas�, New York, Basic Books, 1980

Russel, S., Norvig, P., �Intelligence arti�cielle�, Pearson
education, 2006 (2e edition)

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Bibliography III

Sterling L., Shapiro E., �The Art of PROLOG�, MIT Press

T. Takagi, M. Sugeno, �Derivation of fuzzy control rules
from human operator's control actions�, Proc. of the IFAP
Symp. on fuzzy information, knowledge representation and
decision analysis, pp 55�60, july 1983

S. Tanimoto, �The Elements of Arti�cial Intelligence Using
Common Lisp�, W.H. Freeman & Co, 19958

Tsukamoto T., �An approach to fuzzy reasoning method�,
in Advances in Fuzzy Set Theory and Applications, M.
Gupta, R.K. Ragade & R.R. Yager, eds., North Holland,
1979, pp. 137�149

Introduction
to AI

Philippe
Laroque

Outline

Introduction

searching

Pb solving

Game
Algorithms

Expert
Systems

Logics basics

Formal
systems
PC(0)
PC(1)
PROLOG
Fuzzy logic

Bibliography IV

J. Weizenbaum, �ELIZA�A Computer Program For the
Study of Natural Language Communication Between Man
and Machine�, Communications of the ACM Volume 9,
Number 1 (January 1966): 36-35.

N. Wiener, �Cybernetics - Control and Communication in
the Animal and the Machine�, MIT Press, 1948 (reed.
1961).

L.A. Zadeh, �Fuzzy sets�, Inf. Control 8, 338-353, 1965.

6This reference introduces the game of chess and have well explanation
of minimax algorithm and alpha_beta cuto�

7Good general reference on arti�cial intelligence and on minimax trees.
8Very clear and complete, though using a - now - esoteric programming

language

	Outline
	Introduction to the basic techniques of AI
	History
	AI techniques

	Searching in a state space
	Basic notions
	Production Systems
	Enumeration algorithms

	Solving Problems by Decomposition
	AND-OR Trees

	Game Algorithms
	MinMax Algorithm
	Alpha-Beta Algorithm

	Expert Systems
	Introduction
	Structure of a ES

	Logics basics
	Formal systems
	Propositional calculus PC(0)
	First-order predicate calculus PC(1)
	Introduction to PROLOG
	Introduction to fuzzy logic

