> Philippe Laroque

Outline Introduction searching Pb solving

Algorithms Expert Systems

Logics basics

Introduction to Al

Philippe Laroque

UCP/ETIS/CNRS

Oct. 2008

イロト イロト イヨト イヨト

æ

Philippe Laroque

Outline

Introduction to the basic techniques of AI

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms

Solving Problems by Decomposition

- AND-OR Trees
- Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- Expert Systems
 - Introduction
 - Structure of a ES
 - Logics basics

Outline I

Outline II

イロト イポト イヨト イヨト

э

Introduction to Al

Philippe Laroque

Outline

- Introduction
- searching
- Pb solving
- Algorithms Expert Systems
- Logics basics

- Formal systems
- Propositional calculus PC(0)
- First-order predicate calculus PC(1)
- Introduction to PROLOG
- Introduction to fuzzy logic

Philippe Laroque

History

Introduction to the basic techniques of AI History

• Al techniques

Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
- Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

Philippe Laroque

Outline

Introduction History

Al techniques

searching

Game Algorithm

Expert Systems

_ogics basics

Brief History of Al

Goal: Analyse and mimic human behavior in a machine. Intelligence? (Turing test).

- Cybernetics (Wiener, Rosenblatt...), NN (perceptron).
- 1960, Mc Carthy & al: computer can be used to manipulate symbols (Ada Lovelace, 1842). ELIZA (Weiezbaum 1960): dialog with a psy
- 1969, Minsky/Papert: limitations of perceptron: NN frozen
- 1978, Newell & Simon: the GPS
- 1982, 5th-generation computers (Japan). Goal: parallel thinking machine by '92

Languages

Outline

Introduction

Introduction

Philippe Laroque

History Altechniqu

- searching
- Game Algorithms
- Expert Systems
- Logics basics

- 1958, LISP (J. McCarthy, MIT): program from data
- 1973, PROLOG (A. Colmerauer): inference engines and expert systems generators
- 80s: production rules, frame languages, script languages, logical programming (PLANNER: goal generation for problem solving)

Applications

э

Outline

Introduction

Introduction

Philippe Laroque

History

. **b** 1 . . .

Game Algorithm:

Expert Systems

Logics basics

- Computer-aided programming, diagnosis (MYCIN 76), design (R1 83), planning, education (LOGO)...
- Problem solving (DENDRAL 71, organic chemistry) (AM 79, mathematical concepts discovery)
- Games (chess, poker, bridge...)
- Simulation (qualitative physics)

Philippe Laroque

Outline

Introduction History AI techniques

searching

Game Algorithm

Expert Systems

Logics basics

Introduction to the basic techniques of Al

- History
- AI techniques

Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
- 4 Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

Problems

・ロト ・ 御 ト ・ 国 ト ・ 国 ト

Outline

Introduction History AItechniques

Introduction to Al

> Philippe Laroque

searching

Game Algorithm

Expert Systems

- "Common sense" modelling?
- On real-sized applications: incompleteness of expertise, errors in rules, inconsistency within rule sets...
- Learning
- Combinatory explosion (NP-complete problems): ex. Chess
 - ullet \simeq 40 legal config each turn
 - 7 turns: $40^7 = 163,840,000,000$
 - if 100000 config/s, since epoch: $100000\times3600\times24\times366\times4.6\times10^9\simeq40^{14},$ 7 turns for both players!

Philippe Laroque

Outline

Introduction History Altechniques

searching

Game Algorithm

Expert Systems

Logics basics

Intelligence and Knowledge

Intelligence needs knowledge, which is by nature

- huge
- hard to define precisely
- subject to change in time

Philippe Laroque

Outline

Introduction History Altechniques

searching

Game Algorithm

Expert Systems

_ogics basics

Intelligence and Knowledge

Intelligence needs knowledge, which is by nature

- huge
- hard to define precisely
- subject to change in time

Conclusion:

Need for a representation model of knowledge

> Philippe Laroque

Outline

Introduction History AI techniques

searching

Game Algorithm:

Expert Systems

_ogics basics

Knowledge Representation

Desired features for knowledge representation:

- general (apply in most cases)
- understandable (by people who need it)
- easily maintenable
- can serve as a tool to improve knowledge about knowledge

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Most common techniques:

- state space
- formal systems, as proposition calculus (PC(0)) and predicate calculus (PC(1))

Philippe Laroque

Outline

Introduction searching

Basic notions Production Systems Enumeration

Pb solving

Game Algorithm

Expert Systems

Logics basics

Introduction to the basic techniques of Al

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- 3 Solving Problems by Decomposition
 - AND-OR Trees
- Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0

Outline

イロト イポト イヨト イヨト

Philippe Laroque

- Outline
- Introduction
- Basic notions Production Systems
- Enumeratio algorithms
- Pb solving
- Game Algorithms
- Expert Systems
- Logics basics

Basic Notions

- State: symbolic description of manipulated objects and their properties, and relations between these objects at a given time. Common data structures: lists, arrays, graphs, databases...
- Goal: the state of the system when the problem is solved
- Operator: make state change. Describe atomic actions needed to switch from state A to state B. Defined by its application domain. Common representations: functions, rewriting rules, algorithms...

Philippe Laroque

- Outline
- Introduction
- Basic notions Production Systems Enumeration algorithms
- Pb solving
- Game Algorithms
- Expert Systems
- Logics basics

Basic Notions

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

э

- State: symbolic description of manipulated objects and their properties, and relations between these objects at a given time. Common data structures: lists, arrays, graphs, databases...
- Goal: the state of the system when the problem is solved
- Operator: make state change. Describe atomic actions needed to switch from state A to state B. Defined by its application domain. Common representations: functions, rewriting rules, algorithms...

Problem solving

By applying *rules* that use operators, we start from an inital state to the goal. Rules are *fired* following a given *strategy*: it's a *production system*

Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithm

Expert Systems

Logics basics

Introduction to the basic techniques of Al

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- 3 Solving Problems by Decomposition
 - AND-OR Trees
- Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0

Outline

イロト イポト イヨト イヨト

Philippe Laroque

Production system

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- Set of *production rules*. Left part defines the conditions for applying the rule, right part describes actions to run if rule is fired.
- Data (or facts) base. Contains informations needed to activate the actions. Dynamic structure: applying rules can add information to the base.
- *Command strategy*: defines how rules are fired according to the base contents.

Philippe Laroque

Command strategies

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- Contain criteria to choose rules in order to be as efficient as possible.
- Induce state changes: need for exhaustivity, but risk of *combinatory explosion*.
- Heuristic functions can help avoid C.E. Good heuristic functions demand good knowledge of the problem: no general rule to find them.

Philippe Laroque

Problem Analysis

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- Is the problem breakable into easier sub-problems?
- Can some states be ignored/removed if search fails?
- Must we find a "good" solution or the "best" solution?
- Is the base coherent? Do we need all of the base all the time?
- May the user help the computer find the solution?

> Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

State space enumeration

State spaces can be represented by a directed graph where states are vertices (nodes) and operators are edges. Problem solving = find a path from initial state to goal state. Actual building of the complete graph is seldom necessary: implicitely defined by production rules Important aspects:

- search direction
- order of enumeration
- state representation
- candidate rule selection
- heuristic function definition

Philippe Laroque

Direction of search

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- forward search: starts from initial state. Fired rules have a left part compatible with current state of the problem. Right parts provide new states.
- *backward* search (or *backward chaining*): starts from goal state. Fired rules have a right part compatible with current state of the problem. Left parts provide new states.

Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

Direction choice criteria

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Rules of thumb:

- If there are n initial states and m goal states, choose direction towards max(n, m)
- From current state, choose direction with the lowest branching factor
- If system is interactive, choose direction that fits best user reasoning mode

Philippe Laroque

Order of enumeration

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- *Breadth* first: nodes are visited in the order in which they are created. From current state, possible candidates are states created by applying rules; they are placed in a queue (FIFO).
- *Depth* first: nodes are visited in the reverse order of their creation; they are placed in a stack (LIFO).

Philippe Laroque

Outline

Introduction

searching

- Basic notions Production Systems Enumeration algorithms
- Pb solving
- Game Algorithm
- Expert Systems
- Logics basics

Introduction to the basic techniques of Al

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
- Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0

Outline

イロト イポト イヨト イヨト

Philippe Laroque

Enumeration algorithms

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

• Two lists are used: OPEN and CLOSED

- OPEN contains known nodes waiting to be visited
- CLOSED contains already visited nodes

Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithm

Expert Systems

Logics basics

Breadth-first algorithm

- Place initial node n₀ in OPEN
- If OPEN is empty, stop (failure)
- get and remove first element of OPEN, call it n and add it to CLOSED
- if no successor to n, go to 2
- append every successor s_i to the end of OPEN if it is not already in OPEN or CLOSED (and initialize backpath pointer s_i → n)
- If one of the successors is the goal, stop (success): use pointer chain to retrieve the solution path.
- 🗿 go to 2

Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithm:

Expert Systems

Logics basics

Α в С Е F G Н Ι D J

Э

Example graph

・ロト ・御ト ・注ト ・注ト

Philippe Laroque

Notion of depth

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- For a tree: distance from root node
- For a graph, recursive definition: depth of nearest ancestor + 1 (update necessary during traversal)

Philippe Laroque

Outline

- Introduction
- searching
- Basic notions Production Systems Enumeration algorithms
- Pb solving
- Game Algorithm
- Expert Systems
- Logics basics

Depth-first algorithm

- Place initial node n_0 in OPEN
- If OPEN is empty, stop (failure)
- get and remove first element of OPEN, call it n and add it to head of CLOSED (update depths if necessary)
- ${f O}$ if current depth exceeds max depth, go to 2
- if no successor to *n*, go to 2
- add every successor to the top of OPEN if not already in CLOSED (update depths if necessary and initialize/set associated pointers to n)
- if one of the successors is the goal, stop (success): use pointer chain to retrieve the solution path.
- If for vertices already in CLOSED, recompute depth of successors
- 🧿 go to 2

э

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Path criteria

Outline

Introduction

Introduction to Al

> Philippe Laroque

searching

Basic notions Production Systems Enumeration algorithms

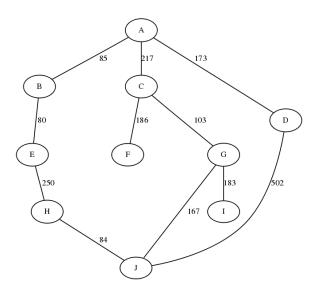
Pb solving

Game Algorithms

Expert Systems

- state switching involves certain operations: each edge has an associated cost
- Order of the visits can be determined to minimize global cost of the solution
- depth-first: the successors of current vertex are sorted on this criterion
- breadth-first: the wole set of nodes waiting to be visited is sorted that way (ex. Dijkstra)

Example graph (2)



イロト イロト イヨト イヨト 二日

Introduction to Al

Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Dijkstra

Outline

Introduction

Introduction to Al

> Philippe Laroque

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- No need for CLOSED, since nodes are only visited once
- Principle:
 - OPEN initially contains all nodes
 - A distance from the source node is maintained
 - Each time a node is visited, that distance may be updated
- This algorithm gives the shortest path under the condition that no weight is negative

Algorithm

э

Outline

Introduction

Introduction to Al

> Philippe Laroque

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithm

Expert Systems

Logics basics

OPEN <- all nodes for each node i set $d(i) = \infty$ except $d(n_0) = 0$ while OPEN not empty

In <- remove-min(OPEN)</p>

2) for each successor s_i of n

1 if
$$d(s_i) > d(n) + w(n, s_i)$$
 then

1
$$d(s_i) < d(n) + w(n, s_i)$$

@ update backpath pointer associated with $s_i: s_i \longrightarrow n$

Notes on Dijkstra

・ロット (雪) () () () ()

э

Outline

Introduction

Introduction to Al

> Philippe Laroque

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

- Simple optimization: stop when n = goal
- Performance:
 - Using adjacency matrices, $O(V^2 + E)$
 - For sparse graphs, using adjacency lists and a heap for OPEN: O ((V + E) log(V))
 - using a Fibonacci heap: O(E + V.log(V))
- Ford-Bellman can be used when some edges have a negative weight but worse performance O(EV)
- Sometimes, one only needs a "good" solution (not the best), but faster: need for an evaluation function

Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

Evaluation function

two parts: f(n) = g(n) + h(n)

- g(n) represents the cost of the path from initial state to current state n
- h(n) represents the cost of the path from current state to goal state
- from now on, the above formula stands for the cost of the *optimal* path *P* containing *n*

optimal path property $\forall n \in P, f(n) = f(n_0)$

Philippe Laroque

Estimation functions

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

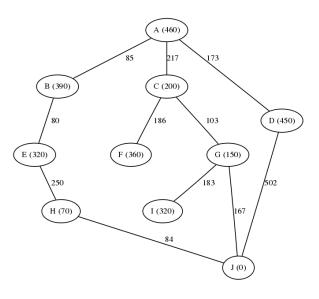
Logics basics

Since we ignore if n is on the optimal path, we estimate the evaluation function: $\widehat{f}(n) = \widehat{g}(n) + \widehat{h}(n)$

- $\hat{g}(n)$ represents the min. cost from n_0 to n at the time n is visited (can only be \geq final value of g(n))
- $\hat{h}(n)$ estimates the cost from *n* to the goal assuming *n* is on the optimal path.

Example graph (3)

ヘロト ヘロト ヘモト ヘモト



Introduction to Al

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

æ

Philippe Laroque

Outline

Introduction

searching

- Basic notions Production Systems Enumeration algorithms
- Pb solving
- Game Algorithms
- Expert Systems
- Logics basics

• Place n_0 in OPEN. compute $\hat{h}(n_0)$ and set $\hat{g}(n_0) = 0$. All other $\hat{g} = \infty$

Α*

- If OPEN is empty, stop (failure)
- remove from OPEN the vertex with minimal \hat{f} , call it n and add it to CLOSED
- if n is the goal, stop (success): use pointer chain to retrieve the solution path.
- For each successor s_i of n:
 - compute $\hat{g}(n) + c(n, s_i)$
 - (a) if s_i is in OPEN or in CLOSED and $\hat{g}(n) + c(n, s_i) > \hat{g}(s_i)$, skip to next successor
 - **o** remove s_i from OPEN and CLOSED if present
 - **o** insert s_i in OPEN and update $g(\hat{s}_i)$ and backpath pointer

- 日本 - 4 国本 - 4 国本 - 4 国本

э

Philippe Laroque

Admissibility of A*

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

Definition

An algorithm *a* is *admissible* if, for every graph representing a possible problem, *a* finds the optimal path

Philippe Laroque

Admissibility of A*

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

Definition

An algorithm *a* is *admissible* if, for every graph representing a possible problem, *a* finds the optimal path

Theorem

A* is admissible if $\forall n, \hat{h}(n) \leq h(n)$ and $(\exists \delta > 0, \forall n, s_i), c(n, s_i) > \delta$

Philippe Laroque

Outline

Introduction

searching

Basic notions Production Systems Enumeration algorithms

Pb solving

Game Algorithms

Expert Systems

Logics basics

Several notes about A^*

- It is possible to set g(n) to 0 systematically. We choose then each time the vertex that minimizes \hat{h} in OPEN (or in the successors of n – "hill climbing" strategy)
- Concerning function h:
 - if h(n) = 0, search is guided by g
 - if g is null too, the search is random
 - if g(n) = 1, (id. depth) the search is breadth-first

> Philippe Laroque

Outline Introduction searching

Pb solving

Game Algorithm:

Expert Systems

Logics basics

Solving problems by decomposition

The idea is to repeatedly break a problem into easier-to-solve subproblems, until each subproblem is trivial.

Outline

イロト イポト イヨト イヨト

Philippe Laroque

AND-OR

Introduction to the basic techniques of A

- History
- Al techniques
- Searching in a state space
 - Basic notions
 - Production Systems
 - Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
 - Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

AND-OR Trees

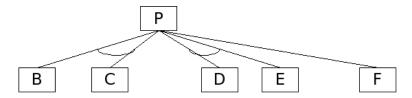
• Previous trees and graphs can be viewed as OR graphs: the algorithm stops as soon as only one solution path is needed

Introduction

Philippe Laroque

AND-OR

 AND-OR graphs and trees are suitable to search solutions to breakable problems, such as: "to solve P, one has to solve B and C, or D and E, or F"



> Philippe Laroque

Outline Introduction

searching

Pb solving

AND-OR Trees

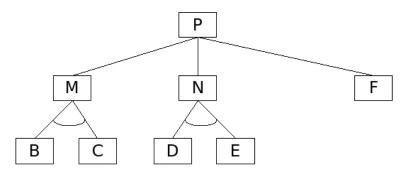
Game Algorithms

E×pert Systems

Logics basics

Standard representation

At a given level, there are only "OR" nodes or "AND" nodes: add intermediate nodes



Node types

ヘロト ヘアト ヘビト ヘビト

э

Introduction to AI

Philippe Laroque

Outline

Pb solving

AND-OR Trees

Game Algorithms

Expert Systems

Logics basics

- "OR" nodes: solved if one of the children is solved
- "AND" nodes: solved if all children are solved
- Initial node (root) correponds to the formulation of the problem
- Terminal nodes are solved problems, non-terminal nodes without successors are unsolved problems

> Philippe Laroque

Outline Introduction

searching

Pb solving

AND-OR Trees

Game Algorithms

E×pert Systems

Logics basics

Production rule analogy

・ロト ・四ト ・ヨト ・ヨト

э

Problem decomposition can be represented with a rule of the form

$$Q \rightarrow A, B, C$$

which means "to solve Q, one must solve A, B and C" A set of such rules is called a *rule base*. Initially solved problems form the *facts base*.

Philippe Laroque

Outline Introduction

searching

AND-OR

AND-OR Trees

Game Algorithms

Expert Systems

Logics basics

Rules base:

$$R_1 : F \rightarrow B, D, E$$

 $R_2 : A \rightarrow D, G$
 $R_3 : A \rightarrow C, F$
 $R_4 : X \rightarrow B$
 $R_5 : E \rightarrow D$
 $R_6 : H \rightarrow A, X$
 $R_7 : D \rightarrow C$
 $R_8 : A \rightarrow X, C$
 $R_9 : D \rightarrow X, B$

Example

Facts base: $\{B, C\}$ Problem to solve: H

Introduction to Al Corresponding AND-OR tree Philippe Laroque Н R6 AND-OR Trees Х А R2 R3 R8 R4 G С F D R7 R1 С В D Е R5

D

> Philippe Laroque

Outline Introduction

Ph. colving

A N D-O R Trees

Game Algorithm:

E×pert Systems

Logics basics

Cost of a solution tree

As for classical "OR" trees, it is possible to use an evaluation function h(n) to estimate the cost of a solution tree rooted at current node:

- if n is terminal, h(n) = 0
- if n is a non-terminal "OR", $h(n) = \min_{i=1..k} \{c(n, s_i) + h(s_i)\}$
- if n is a non-terminal "AND", $h(n) = \sum_{i=1..k} \{c(n, s_i) + h(s_i)\}$
- if n is unsolved, h(n) is undefined

Philippe Laroque

Outline Introduction

searching

Pb solving

AND-OR Trees

Game Algorithms

Expert Systems

Logics basics

Estimation of the evaluation function

During search phase, h cannot be computed, only estimated (using \hat{h}).

At each step of the search tree building phase, *extrema* vertices fall into four categories:

- terminals: $\hat{h}(n) = 0$
- 2 non-terminals whose successors have not yet been visited: $\hat{h}(n)$ is an estimation of the solution tree rooted at n.
- Inon-terminals whose successors have been visited:

• if n is an "OR" node: $\hat{h}(n) = \min_{i=1..k} \{c(n, s_i) + \hat{h}(s_i)\}$ • if n is an "AND" node: $\hat{h}(n) = \sum_{i=1..k} \{c(n, s_i) + \hat{h}(s_i)\}$

Philippe Laroque

Outline Introduction searching

Game

Algorithms MinMax alpha-beta

Expert Systems

Logics basics

Game algorithms

・ロト ・ 御 ト ・ 国 ト ・ 国 ト

-

Good application domain for AI:

- They use a strategy whose accuracy can be easily measured.
- They demand some domain-specific knowledge to define heuristics leading to winning configurations.

In complex games, CE must definitely be avoided. To do so, one must have:

- A *procedure to generate good movements* in search space, which must select the most "promising" moves.
- A static evaluation function which measures the quality of a given configuration.

Philippe Laroque

Introduction

Pb solving

Game Algorithms

MinMax alpha-beta

Expert Systems

Logics basics

1- and 2- player games

- 1-player games can use A* algorithm
- 2-player games often need an AND-OR graph-like structure:

graph game		
vertex, problem state	game state	
terminal node, solved problem	winning configuration	
extremum vertex, unsolved problem	loosing configuration	
OR vertex	l's turn to play	
AND vertex HE's turn to p		

э

イロト イポト イヨト イヨト

Philippe Laroque

- Outline Introductio
- searching
- Pb solving

Game Algorithms

- MinMax alpha-beta
- Expert Systems
- _ogics basics

Simultaneous moves

• In the case of zero-sum games: choose by solving a set of equations (J. von Neumann, 1928):

	B1	B2	B3
A1	+3	-2	+2
A2	-1	0	+4
A3	-4	-3	+1
B)			

(same - negated payoff matrix for player

・ロト ・日 ・ ・ モ ・ ・ モ ・

- Read: "if A plays 1 and then B plays 1 too, then A wins 3 (and B looses 3)"
- Simple choice: A2 (worst case costs 1) and B2 (0 cost)
- But A2 \rightarrow B1 \rightarrow A1 \rightarrow B2: unstable!
- By solving a set of equations, the system can be made stable

Philippe Laroque

Outline Introduction searching

Pb solving

Game Algorithms

MinMax alpha-beta

Expert Systems

Logics basics

Example of stabilization

3

A's point of view: A3 will never be chosen because always worse than A2.

B's point of view: B3 will never be chosen because always worse than both B1 and B2.

A: Call
$$p =_{def} p(A_1)$$
, then

- If B plays B1 we get 3p (1 p) = 4p 1
- If B plays B2 we get -2p
- Hence $-2p = 4p 1 \Rightarrow p = \frac{1}{6}$, and cost is $\frac{1}{3}$

B: Call
$$p =_{def} p(B_1)$$
, then

• If A plays A1 we get -3p+2(1-p)=-5p+2

• Hence $p = -5p + 2 \Rightarrow p = \frac{1}{3}$, and gain is $\frac{1}{3}$

MinMax

Outline

イロト イポト イヨト イヨト

Philippe Laroque

Introduction to the basic techniques of A

- History
- Al techniques
- 2 Searching in a state space
 - Basic notions
 - Production Systems
 - Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
- 4 Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

MinMax Algorithm

• Game tree developped to depth *d*: leaves are evaluated using static evaluation function.

Introduction

Philippe Laroque

MinMax

- The algorithm tries to make I (usually, the computer) win: I tries to maximise the evaluation function, HE tries to minimize it (hence the name, MinMax)
- Goal: anticipate several turns and evaluate best turn according to *d*.
- OR vertices are associated with MAX, AND vertex with MIN

Search space size

Outline Introduction searching

Introduction to Al

> Philippe Laroque

Algorithms MinMax alpha-beta Expert

Logics basics

- Exhaustive exploration of search space is not realistic
- Example: connect4:
 - branching factor = 7
 - max depth = 42
 - # configs = $7^{42}\simeq 3.10^{35}$
 - assuming 10^8 configs visited per second: $10^{27}s \simeq 3.10^{23}h \simeq 10^{22}$ days $\simeq 3.10^{19}$ years
- Need to stop exploration at given depth d

Philippe Laroque

Outline Introduction searching Pb solving

Algorithms MinMax alpha-beta Expert

Logics basics

Principle of MinMax

・ ロ ト ス 雪 ト ス 目 ト

э

- Build search tree to depth d
- 2 Compute evaluation function v(n) on leaves
- Bottom-up-compute values V(n) for internal nodes using following rule:
 - V(n) = v(n) if n is an extremum
 - $V(n) = \max_i \{V(s_i)\}$ if n is a MAX vertex
 - $V(n) = \min_i \{V(s_i)\}$ if n is a MIN vertex

> Philippe Laroque

Outline Introduction searching Pb solving

MinMax alpha-beta

Systems

_ogics basics

Example of evaluation function

For connect4:

- let n₁ be the number of "potential ones" (a token and 3 spaces in a row)
- let n₂ be the number of "potential twos" and n₃ the number of "potential threes".
- Since potential threes are of much greater value than potential ones, give them higher weights, for instance $f(conf, player) = n_1 + 5n_2 + 50n_3$
- Then v(conf) can be defined as follows:

$$v(conf) = f(conf, I) - f(conf, HE)$$

э

MinMax algorithm

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

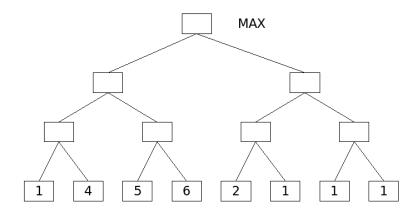
function minimax(node, depth) if node is a terminal node or depth = 0return v(node) if the adversary is to play at node let α := MAXVAL //+ infinity foreach child of node $\alpha := \min(\alpha, \min(\alpha, \min(\alpha, -1)))$ else {we are to play at node} let α := -MAXVAL foreach child of node $\alpha := \max(\alpha, \min(\alpha, \min(\alpha, \alpha)))$ return α

Introduction

Philippe Laroque

MinMax

A Simple Example

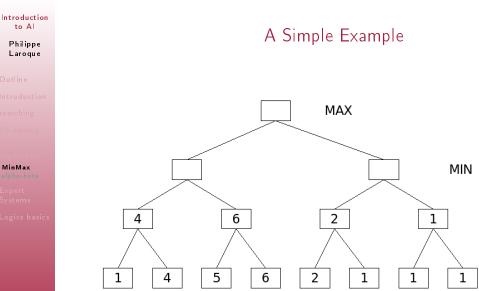


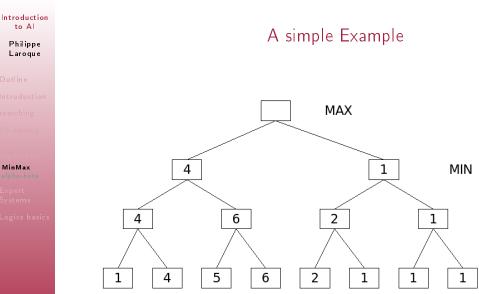
Introduction to Al Philippe Laroque

Outline Introduction searching Pb solving

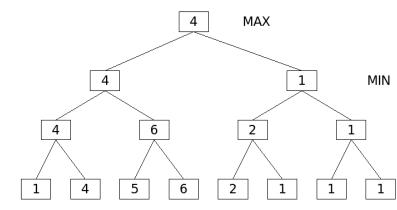
MinMax alpha-beta Expert Systems

Logics basics





A simple Example



Introduction to Al

> Philippe Laroque

MinMax

Philippe Laroque

alpha-beta

Introduction to the basic techniques of A

- History
- Al techniques
- 2 Searching in a state space
 - Basic notions
 - Production Systems
 - Enumeration algorithms
- 3 Solving Problems by Decomposition
 - AND-OR Trees

4 Game Algorithms

- MinMax Algorithm
- Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

> Philippe Laroque

Outline Introduction searching Pb solving

MinMax alpha-beta

Expert Systems

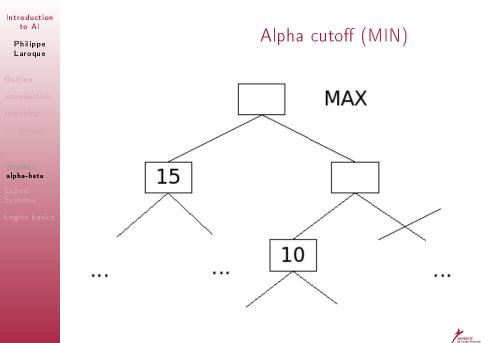
_ogics basics

Alpha-Beta: improvement to MinMax

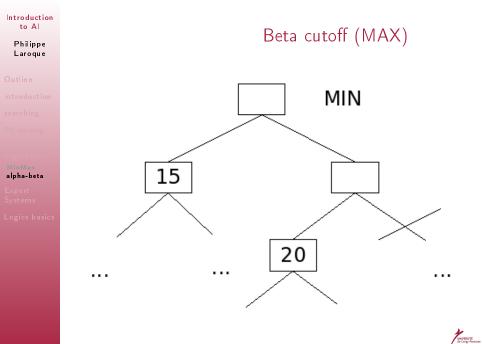
- MinMax visits all of the search tree, which is not always necessary
- Alpha-Beta detects the possibility of cut-offs in the tree
- Two more variables:
 - lpha represents the minimum value MAX is sure to reach
 - $\bullet~\beta$ represents the maximum value MAX can hope to reach

ヘロア 人間 アメ 御 アメ 御 ア

э



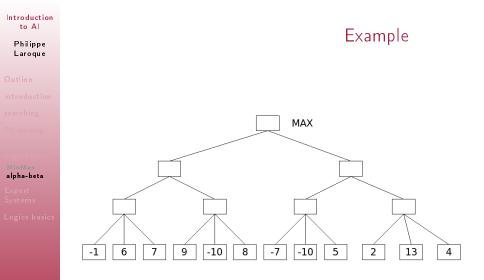
(ロ)、(部)、(E)、(E)、(E)、(の)、



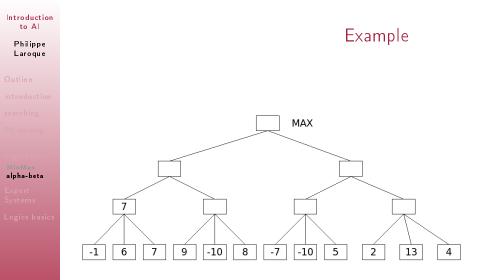
(ロト (個) (E) (E) (E) (9)

Alpha-Beta algorithm

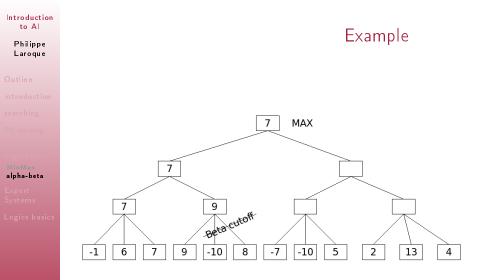
```
alphaBeta (n,d,\alpha,\beta) { //\alpha = -\infty, \beta = +\infty
  if (d = 0) return v(n)
  if 'HE' plays {
     for each child c; of n {
        val = alphaBeta (c_i, d-1, \alpha, \beta)
        if (val < \beta) \beta = val
        if (\alpha > = \beta) break
      }
     return \beta
   } else { // 'I' plays
     for each child c; of n {
        val = alphaBeta (c_i, d-1, \alpha, \beta)
        if (val > \alpha) \alpha = val
        if (\alpha > = \beta) break
     return \alpha
                               ◆□▶ ◆御▶ ◆臣▶ ★臣▶ ―臣 … のへで
```



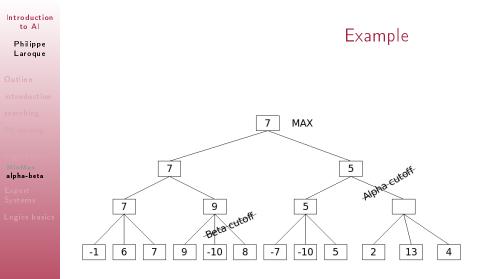
Constitution Con



Contraction Cont



Contraction Cont



Constitution

> Philippe Laroque

Outline Introduction searching Pb solving

Algorithms MinMax alpha-beta

Systems

_ogics basics

Expectable benefit of alpha-beta

- algorithm is heavily dependent upon the order in which moves are searched.
- If program always manages to pick best move first, effective branching factor is equal to approximately the square root of the expected branching factor (best possible case)
- massive improvement: allows to search twice as deeply in the same number of nodes:

$$\sqrt{n}^h = \left(n^{\frac{1}{2}}\right)^h = n^{\frac{h}{2}}$$

Philippe Laroque

Outline Introduction searching Pb solving

Expert Systems

_ogics basics

Example of connect4

・ ロ ト ス 雪 ト ス ヨ ト

э

- assuming a depth of 12 (6 turns for each player)
- number of configs to examine with minmax: $7^{12}\simeq 14 \text{billions}$
- if 10⁸ config visited per second: 2 minutes!
- number of config to examine with alpha-beta (opt.): $7^6 = 117649$, which takes approx. 1ms!

Philippe Laroque

Introduction

Introduction to the basic techniques of A

- History
- Al techniques
- 2 Searching in a state space
 - Basic notions
 - Production Systems
 - Enumeration algorithms
- 3 Solving Problems by Decomposition
 - AND-OR Trees
 - Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
 - Logics basic:
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

> Philippe Laroque

- Outline Introduction searching
- Algorithms Expert Systems Introduction
- Logics basics

Introduction to Expert Systems

- Human-like reasoning, if limited knowledge domain
- As humans, able to explain their conclusions
- ES building in two phases:
 - Analysis: understand the underlying domain-specific knowledge mechanisms.
 - Synthesis: program a machine to behave like a domain expert

э

- Structuring level
- Onceptual level
- Ognitive level

> Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems Introduction

_ogics basics

Structuring level

Goal: model expert method using AI techniques. Need to evaluate complexity, which roughly falls into three classes:

- diagnosis systems: classify a situation using (constant) descriptor(s) → propositional calculus
- Problem solving systems: input is parameterized by variables. Find a series of legal transformations to find correct values → 1st-order predicate calculus
- planning systems: try to optimally execute a set of tasks subject to a set of constraints. Most complex class, because
 - **0** constraint optimization
 - ontext dynamically evolves

Conceptual level

Outline Introduction searching Pb solving

Introduction

Philippe Laroque

Algorithms Expert Systems Introduction annotice

Logics basics

- Defines the semantics of the language to express knowledge (structuring level defines syntax).
- Describes descriptors and predicates with which laws, states and operators modelling knowledge will be defined.

Philippe Laroque

Cognitive level

- Outline Introduction searching Pb solving
- Algorithms Expert Systems Introduction
- Logics basics

• Uses the language defined in previous levels to represent knowledge of the expert

Outline

イロト イポト イヨト イヨト

Philippe Laroque

structure

Introduction to the basic techniques of A

- History
- Al techniques
- 2 Searching in a state space
 - Basic notions
 - Production Systems
 - Enumeration algorithms
- 3 Solving Problems by Decomposition
 - AND-OR Trees
 - Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm

5 Expert Systems

Introduction

Structure of a ES

- Logics basic
 - Formal systems
 - Propositional calculus PC(0)

> Philippe Laroque

- Outline Introduction searching
- Algorithms Expert Systems Introduction
- Logics basics

Components of an $\operatorname{\mathsf{ES}}$

・ロト ・ 御 ト ・ 国 ト ・ 国 ト

э

- Knowledge base: domain-specific. Describes manipulated concepts, their relations, resolution strategies, particular cases. Some uncertain knowledge can be probabilistically defined
- Fact base: current situation of the system. Can contain proven facts or facts to prove (goals).
- Inference engine: process which solves the problem specified by input facts of the FB, using knowledge contained in the KB.

Philippe Laroque

- Outline Introduction searching
- Pb solving
- Expert Systems Introduction structure
- Logics basics

Operating mode of an IE

- Most of the time, KB contains *production rules.*
- Each rule contains a *condition* part and a *body* (describes the effects of firing the rule).
- IE runs several *evaluation-execution* cycles.
 - evaluation phase determines candidate rules after current state of FB;

・ロト ・四ト ・ヨト ・ヨト

3

- execution phase updates FB after firing the rule.
- IE stops if no candidate rule in evaluation phase (or in execution phase, on an explicit *stop* statement)

> Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems Introduction structure

Logics basics

Contents of evaluation phase

- *restriction*: according to current state of problem, select a subset of FB and a subset of KB (optional).
- *pattern-matching*: condition part of rules of KB are compared to facts of FB (systematic).
- conflict resolution: determines actual subset of rules that will be fired (optional; for instance, if two rules have the same "condition" part and lead to contradictory "body" parts: can rely on a *measure of confidence* in rules to choose which rule to fire)

> Philippe Laroque

Outline Introduction searching Pb solving

Algorithms Expert Systems Introduction structure

Logics basics

Contents of execution phase

IE executes body part of selected rules. When the rule set is empty,

- either IE stops (in simple cases)
- or IE defines a new subset by reconsidering the set of rules elaborated during pattern matching

Philippe Laroque

Outline Introduction searching Pb solving

Algorithms Expert Systems Introduction structure

Logics basics

Performance of an ES

- Solving a problem involves chaining several cycles, called *inference cycles*.
- The number of inference cycles per time unit (LIPS: Logical Inferences Per Second) is one of the performance indicators for 5th generation computers.
- IE can work using forward and/or backward chaining

Forward chaining

Outline Introduction searching Pb solving

Introduction

Philippe Laroque

- Algorithms Expert Systems Introduction structure
- Logics basics

- IE starts from proven facts to find the solution
- When condition (left) part of a rule is is FB, its right part is added to FB (which thus only contains proven facts)

Backward chaining

イロマ 人間マ 人間マ 人間マ

Outline Introduction searching

Introduction

Philippe Laroque

Algorithms Expert Systems Introduction structure

Logics basics

- IE starts form goal and finds needed facts to prove it (AND-OR tree)
- Matching operates on right parts of the rules: when right part of a rule is in FB, its left part is added to FB
- Initial problem is solved when every problem it depends on is solved (*i.e.* is in FB)

NB: some IE use *mixed chaining*, according to context.

Monotonous mode

э

Outline Introductior searching

Introduction to Al

> Philippe Laroque

Pb solving

Algorithms Expert Systems Introduction structure

Logics basics

- An SE runs in monotonous mode if
 - no knowledge (rule or proven fact) can be removed;
 - 2 new knowledge never induces contradiction
- Most PC(0) and PC(1) systems are monotonous
- In non-monotonous systems, firing a rule can modify KB (and even RB)

Brief History

Introduction to Al

Philippe Laroque

- Outline
- searching
- Pb solving
- Algorithms Expert
- Logics basics
- Formal systems PC(0) PC(1) PROLOG Fuzzy logic

- 4th c. BC: Aristote (variable, quantization, terms), stoïcists (Modus ponens p ∧ (p ⇒ q) ⊢ q, modus tollens ¬q ∧ (p ⇒ q) ⊢¬p):
- 13th c.: Scholastic logic (G. d'Occam Entia non sunt multiplicanda praeter necessitatem¹, ...)
- 15th c.: stagnation (exception: Leibniz, thinking=calculus on signs: step from thought → speech → writing to writing → thought)
- 1850: Boole, de Morgan
- 20th c.: Peano (axiomatization), Russel (*Principia Mathematica*), Hilbert (problem of the non-contradiction of mathematics), Gödel (1931: incompleteness)...

¹Occam's razor: do not use new hypotheses as existing ones are sufficient (*principle of economy*)

Philippe Laroque

Formal svstems

Introduction to the basic techniques of Al

- History
- Al techniques
- 2 Searching in a state space
 - Basic notions
 - Production Systems
 - Enumeration algorithms
- 3 Solving Problems by Decomposition
 - AND-OR Trees
 - Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

Definition of a FS

a FS S is made of

- An alphabet Σ , finite or countable, numbered
- A recursive² subset F ⊆ Σ* called the *well-formed* formulas of S.
- A recursive subset $A \subseteq F$ called the *axioms* of *S*.
- A finite set *R* of decidable predicates defined on *F*, called the *inference rules* of *S*.

Notation: $f_1, ..., f_n \vdash^r g$ rather than $r(f_1, ..., f_n, g)$

²One can build a program that, given a formula f, says wether f is well-formed or not $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \equiv \langle \Xi \rangle$

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Introduction to Al

> Philippe Laroque

Example

Outline Introducti

Introduction to Al

> Philippe Laroque

searching

Algorithm: Expert Systems

Logics basics

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

• $\Sigma = \{1, +, =\}$ • $F = \{1^+ + 1^+ = 1^+\}$ • $A = \{1 + 1 = 11\}$ • $R = \begin{cases} 1^n + 1^m = 1^p + r_1 & 1^{n+1} + 1^m = 1^{p+1} \\ 1^n + 1^m = 1^p + r_2 & 1^n + 1^{m+1} = 1^{p+1} \end{cases}$

Philippe Laroque

Outline Introductio

Pb solving

Algorithms Expert Systems

Logics basics

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Deduction and theorem

Let $(h_i) \subseteq F$ be a set of formulas called *hypotheses* Definition

- a Deduction from (h_i) is a finite family (f_i) in F such as
 - $f_i \in A$, or
 - $f_i \in (h_i)$, or
 - $\exists (f_j) \subseteq (f_i), \exists r_k \in R/(f_j) \vdash^{r_k} f_i$

A Theorem is a deduction from \emptyset . The set of S's theorems is called T_S

Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems

Logics basics

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

A simple analogy: chess

- Σ : chessboard and figures
- F: configurations of figures on chessboard
- A: initial configuration
- T: allowed configurations
- R: rules of chess game

Philippe Laroque

Outline Introduction searching

Pb solving

Algorithms Expert Systems

_ogics basics

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Theorem and truth

Attention

No necessary coincidence between definition of the theorems and the interpretation human mind makes from formulas

- What is known to be true can not be a theorem (completeness problem)
- A theorem can not reflect a reality of our interpretation (*consistency* problem)

Ex: 1+1+1=111 is "intuitively" true, but is no theorem (nor a wff)

Philippe Laroque

Outline Introduction searching Ph. solving

Algorithms Expert Systems

_ogics basics

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Properties of a FS

Definition

- A FS is Coherent if $T \neq F$
- A FS is Decidable if T is recursive
- A FS is Consistent if there is no wff $f \in F/f \in T, \neg f \in T$

Gödel's theorem: one cannot prove the consistency of a "complex"³ FS, but with tools more powerful than the FS itself. Moreover, if a FS is consistent and its theorems are all "true", then there exist arithmetical formulas that are true and are not theorems of the FS.

There are FS in which T is not recursive (automatic proof pb)

-

³including arithmetics

Introduction to Al

Philippe Laroque

Outline

searching

Pb solving

Algorithm Expert Systems

Logics basics

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Let S be defined with

- $\Sigma = \{A, B, C\}$
- $F = \{A_n B C_m (n, m \ge 0)\}$

•
$$A = \{A_{2i}BC_{2i}, (i \ge 0)\}$$

•
$$R = \begin{cases} A_n B C_m \\ A_{n'} B C_{m'} \end{cases} \vdash A_{n+n'} B C_m \end{cases}$$

Let S be defined with

Introduction

Philippe Laroque

Formal svstems

- $\Sigma = \{A, B, C\}$
- $F = \{A_n B C_m (n, m \ge 0)\}$

•
$$A = \{A_{2i}BC_{2i}, (i \ge 0)\}$$

•
$$R = \begin{cases} A_n B C_m \\ A_{n'} B C_{m'} \end{cases} \vdash A_{n+n'} B C_m \end{cases}$$

- Prove that A_6BC_2 and $A_{10}B$ are theorems of S
- Characterize T and show that any theorem can be derived in at most 3 steps
- Show that if any axiom is removed, T is changed
- Give a FS with same
 Σ, F, T, only 1 axiom and
 2 inference rules

・ロト ・ 雪ト ・ ヨト ・ ヨト

Solution

Introduction to Al

Philippe Laroque

Outline Introduction searching Pb solving

Algorithms Expert Systems

Logics basics

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Let's call $F_{n,m}$ the formula A_nBC_m . Axioms are thus $A = \{A_i = F_{2i,2i}\}$

1
$$A_1, A_2 \vdash F_{6,2} \text{ and } A_0, A_{10} \vdash F_{10,0}$$

② $T = \{T_{i,j} = F_{2i,2j}, 0 \le j \le i\}$. Steps: 1/ A_i , 2/ A_{i-j} , 3/ $A_j, A_{i-j} \vdash^r T_{i,j}$

reciprocal: let $F_{i,j} \in T$ then i < j is impossible: we would have $F_{i-j,0} \in T$ and i-j < 0, which is not in F. So $i \ge j$. Then $F_{i-j,0} \in T$ (appl. of R), and thus (i-j) and j are even: OK

• $A' = A - \{A_i = T_{i,i}\}$: $T_{i,i}$ cannot be proven any more • $A = \{A_0\}, r_1 = r, A_n BC_n \vdash^{r_2} A_{n+2} BC_{n+2}$

Philippe Laroque

PC(0)

Introduction to the basic techniques of Al

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
- Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

PC(0)

・ロト ・ 理ト ・ ヨト ・ ヨト

э

Philippe Laroque

Introduction to Al

Outline Introductio

- Pb solving
- Algorithms Expert Systems
- Logics basics Formal systems PC(0) PC(1)
- PROLOG Fuzzy logic

• $\Sigma(0) = \{P_1, ..., P_n, ...\} \cup \{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\} \cup \{T, F\}^4$

 F(0) =<WFF>=<P> | ¬<WFF> | (<WFF><BCon><WFF>)

•
$$A(0) =$$

$$\begin{cases}
A_1 \quad (p \Rightarrow (q \Rightarrow p)) \\
A_2 \quad ((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))) \\
A_3 \quad ((\neg p \Rightarrow \neg q) \Rightarrow (q \Rightarrow p))
\end{cases}$$
• $R(0) = MP$

Philippe Laroque

Outline

- Introduction searching
- Pb solving
- Algorithms Expert Systems
- Logics basics Formal systems PC(0)
- PC(1) PROLOG Fuzzy logic

Exercises

æ

- Show that \neg and \Rightarrow are sufficient
- Model (*p*?*q* : *r*)
- Proove $(p \Rightarrow p)$

 \bullet Show that \neg and \Rightarrow are sufficient

• Model (*p*?*q* : *r*)

Introduction to Al

> Philippe Laroque

PC(0)

• Proove $(p \Rightarrow p)$

$$p \lor q : (\neg p \Rightarrow q), p \land q : \neg (p \Rightarrow \neg q), (p \Leftrightarrow q) : \neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p))$$

 \bullet Show that \neg and \Rightarrow are sufficient

- Model (*p*?*q* : *r*)
- Proove $(p \Rightarrow p)$

 $p \lor q : (\neg p \Rightarrow q), p \land q : \neg (p \Rightarrow \neg q), (p \Leftrightarrow q) :$ $\neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p))$ $((p \Rightarrow q) \land (\neg p \Rightarrow r))$

ogics ba

PC(0) PC(1) PROLOG

Introduction to Al

Philippe Laroque

 \bullet Show that \neg and \Rightarrow are sufficient

• Model (*p*?*q* : *r*)

Introduction

Philippe Laroque

PC(0)

• Proove $(p \Rightarrow p)$

 $p \lor q : (\neg p \Rightarrow q), p \land q : \neg (p \Rightarrow \neg q), (p \Leftrightarrow q) :$ $\neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p))$ $((p \Rightarrow q) \land (\neg p \Rightarrow r))$ $A_1 \quad (p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \quad q : (p \Rightarrow p)$

Contraction Contraction Contraction

 \bullet Show that \neg and \Rightarrow are sufficient

Model (p?q : r)

Introduction to Al

> Philippe Laroque

PC(0)

• Proove $(p \Rightarrow p)$

 $p \lor q : (\neg p \Rightarrow q), p \land q : \neg (p \Rightarrow \neg q), (p \Leftrightarrow q) :$ $\neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p))$ $((p \Rightarrow q) \land (\neg p \Rightarrow r))$ $A_1 \quad (p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \quad q : (p \Rightarrow p)$ $A_2 \quad ((p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \Rightarrow ((p \Rightarrow (p \Rightarrow p))) \Rightarrow (p \Rightarrow p))) \quad q$

・ロト ・ 理ト ・ ヨト ・ ヨト

3

 \bullet Show that \neg and \Rightarrow are sufficient

Model (p?q : r)

Introduction to Al

> Philippe Laroque

PC(0)

• Proove $(p \Rightarrow p)$

 $p \lor q : (\neg p \Rightarrow q), p \land q : \neg (p \Rightarrow \neg q), (p \Leftrightarrow q) :$ $\neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p))$ $((p \Rightarrow q) \land (\neg p \Rightarrow r))$ $A_1 \quad (p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \quad q : (p \Rightarrow p)$ $A_2 \quad ((p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \Rightarrow ((p \Rightarrow (p \Rightarrow p))) \Rightarrow (p \Rightarrow p))) \quad q$ $MP \quad ((p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

3

 \bullet Show that \neg and \Rightarrow are sufficient

Model (p?q : r)

Introduction to Al

> Philippe Laroque

PC(0)

• Proove $(p \Rightarrow p)$

 $p \lor q : (\neg p \Rightarrow q), p \land q : \neg (p \Rightarrow \neg q), (p \Leftrightarrow q) :$ $\neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p))$ $((p \Rightarrow q) \land (\neg p \Rightarrow r))$ $A_1 \quad (p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \quad q : (p \Rightarrow p)$ $A_2 \quad ((p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \Rightarrow ((p \Rightarrow (p \Rightarrow p))) \Rightarrow (p \Rightarrow p))) \quad q$ $MP \quad ((p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))$ $A_1 \quad (p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))$

 \bullet Show that \neg and \Rightarrow are sufficient

Model (p?q : r)

Introduction to Al

> Philippe Laroque

PC(0)

• Proove $(p \Rightarrow p)$

 $p \lor q : (\neg p \Rightarrow q), p \land q : \neg (p \Rightarrow \neg q), (p \Leftrightarrow q) :$ $\neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p))$ $((p \Rightarrow q) \land (\neg p \Rightarrow r))$ $A_1 \quad (p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \quad q : (p \Rightarrow p)$ $A_2 \quad ((p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \Rightarrow ((p \Rightarrow (p \Rightarrow p))) \Rightarrow (p \Rightarrow p))) \quad q$ $MP \quad ((p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))$ $A_1 \quad (p \Rightarrow (p \Rightarrow p)) \quad q : p$ $MP \quad (p \Rightarrow p)$

Interpretation

Definition

Introduction to Al

> Philippe Laroque

PC(0)

An interpretation i is an application

$$i: \{P_1, ..., P_n\} \to \{T, F\}$$

By extension, concept of interpretation of a formula $f \in F(0)$

- $f \in F(0)$ is consistent if $\exists i, i(f) = T$
- $f \in F(0)$ is valid (or is a tautology) if $\forall i, i(f) = T$ (notation $\models f$)
- c is a logical consequence of h: if i(h) = T, then i(c) = T.
 Notation h ⊨ c (tautologies are logical consequences of Ø).

> Philippe Laroque

- Outline Introduction searching Pb solving
- Algorithms Expert Systems

Logics basics Formal systems PC(0) PC(1)

Properties of an axioms schema

- An AS is *consistent* if ∀f, if ⊢ f then ⊨ f (everything that is demonstrable is true)
- An AS is *complete* if ∀f, if ⊨ f then ⊢ f (everything that is true is demonstrable)

Philippe Laroque

Outline Introductio searching

Pb solving

Algorithms Expert Systems

Logics basics Formal systems PC(0) PC(1)

- Always decidable, BUT
- N variables give 2^N distinct interpretations
- Simplification algorithms exist, but inefficient (except clause resolution)

Validity of a formula

Philippe Laroque

Outline Introduction searching Ph. solving

Algorithms Expert Systems Logics basics Formal Avalence **PC(1)**

Principle of Deduction

${\sf Definition}$

c is a logical consequence of a set of hypotheses if and only if adding $\neg c$ to this set makes it inconsistent :

$$(h_i) \models c$$
 " \iff " $(h_i) \cup \{\neg c\} \models F$

Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems Logics basic Formal

PC(0) PC(1) PROLOC

Principle of uniform substitution

Definition

Let t be a tautology, p a proposition of t and f a formula. Let

$$t' = \sigma(t, p, f)$$

be the formula obtained when replacing every occurrence of p in t with f. Then t' is a tautology

Philippe Laroque

PC(0)

Clause and clausal form

Definition

- A literal is either a proposition, or its negation.
- A *clause* is a finite disjunction of literals (empty clause is writen ∅).
- A normal conjunctive form (NCF) is a finite conjunction of clauses

Philippe Laroque

PC(0)

Formulas and NCF

Theorem

Any fomula of F(0) has an equivalent NCF

Proof.

(by construction):

- $\bullet \quad \text{transform} \Leftrightarrow \text{into } (\Rightarrow, \land) \text{ pairs}$
- **2** transform $p \Rightarrow q$ into $\neg p \lor q$
- 🧿 put ¬ inside formulas, remove ¬¬

Notes about NCF

・ロト ・ 行下・ ・ ヨト・ ・ ヨト

э

Outline Introduction searching

Introduction to Al

> Philippe Laroque

- Algorithms Expert Systems
- Logics basics Formal systems PC(0) PC(1) PROLOG

- Any clause containing a literal and its negation is valid (no other valid clause), and can be removed from the NCF
- A "pure" NCF contains at most 1 occurrence of any literal
- If one clause of an NCF is a subclause of another, the latter can be removed
- If \emptyset is in a NCF, the NCF is inconsistent

Introduction to Al

Philippe Laroque

Outline Introductio searching

Pb solving

Algorithms Expert Systems Logics basio

PC(0)

PC(1) PROLOG

put $((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land s) \Rightarrow r))$ into NCF

Introduction to Al

Philippe Laroque

Outline Introduction searching

Pb solving

Algorithms Expert Systems

Logics basic Formal systems PC(0)

PC(1) PROLOG Fuzzy logic |

put
$$((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land s) \Rightarrow r))$$
 into NCF
 $(\neg (p \Rightarrow (q \Rightarrow r)) \lor ((p \land s) \Rightarrow r))$

Introduction to Al

Philippe Laroque

Outline Introduction searching

Algorithm Expert Systems

Logics basic Formal systems PC(0)

PC(1) PROLOG Fuzzy logic

put
$$((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land s) \Rightarrow r))$$
 into NCF
 $(\neg (p \Rightarrow (q \Rightarrow r)) \lor ((p \land s) \Rightarrow r))$
 $(\neg (\neg p \lor (\neg q \lor r)) \lor (\neg (p \land s) \lor r))$

Introduction to Al

Philippe Laroque

Outline Introduction searching

Pb solving

Algorithm Expert Systems

Logics basics Formal systems PC(0) PC(1) put $((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land s) \Rightarrow r))$ into NCF $(\neg (p \Rightarrow (q \Rightarrow r)) \lor ((p \land s) \Rightarrow r))$ $(\neg (\neg p \lor (\neg q \lor r)) \lor (\neg (p \land s) \lor r))$ $((\neg \neg p \land (\neg \neg q \land \neg r)) \lor ((\neg p \lor \neg s) \lor r))$

Introduction to Al

Philippe Laroque

Outline Introduction searching

Pb solving

Algorithm Expert Systems

Logics basics Formal systems PC(0) PC(1) put $((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land s) \Rightarrow r))$ into NCF $(\neg (p \Rightarrow (q \Rightarrow r)) \lor ((p \land s) \Rightarrow r))$ $(\neg (\neg p \lor (\neg q \lor r)) \lor (\neg (p \land s) \lor r))$ $((\neg \neg p \land (\neg \neg q \land \neg r)) \lor ((\neg p \lor \neg s) \lor r))$ $((p \land (q \land \neg r)) \lor ((\neg p \lor \neg s) \lor r))$

Introduction to Al

Philippe Laroque

Outline Introduction searching

Pb solving

Algorithm Expert Systems

Logics basics Formal systems PC(0) PC(1)

put
$$((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land s) \Rightarrow r))$$
 into NCF
 $(\neg (p \Rightarrow (q \Rightarrow r)) \lor ((p \land s) \Rightarrow r))$
 $(\neg (\neg p \lor (\neg q \lor r)) \lor (\neg (p \land s) \lor r))$
 $((\neg \neg p \land (\neg \neg q \land \neg r)) \lor ((\neg p \lor \neg s) \lor r))$
 $((p \land (q \land \neg r)) \lor ((\neg p \lor \neg s) \lor r))$
 $(p \lor \neg p \lor \neg s \lor r) \land (q \lor \neg p \lor \neg s \lor r) \land (\neg r \lor \neg p \lor \neg s \lor r)$

Introduction to Al

Philippe Laroque

Outline Introduction searching

Pb solving

Algorithm Expert Systems

Logics basic Formal systems PC(0) PC(1) PROLOG

put
$$((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land s) \Rightarrow r))$$
 into NCF
 $(\neg (p \Rightarrow (q \Rightarrow r)) \lor ((p \land s) \Rightarrow r))$
 $(\neg (\neg p \lor (\neg q \lor r)) \lor (\neg (p \land s) \lor r))$
 $((\neg \neg p \land (\neg \neg q \land \neg r)) \lor ((\neg p \lor \neg s) \lor r))$
 $((p \land (q \land \neg r)) \lor ((\neg p \lor \neg s) \lor r))$
 $(p \lor \neg p \lor \neg s \lor r) \land (q \lor \neg p \lor \neg s \lor r) \land (\neg r \lor \neg p \lor \neg s \lor r)$
 $(q \lor \neg p \lor \neg s \lor r)$

Contraction Cont

Philippe Laroque

Outline Introduction searching

Algorithm Expert Systems

Logics basics Formal systems PC(0) PC(1) BROJOC

• Let f be a NCF, c_1, c_2 two clauses of f, l a literal. If $\begin{cases} l \in c_1 \\ \neg l \in c_2 \end{cases}$, then $r = c_1 - \{l\} \cup c_2 - \{\neg l\}$ is the resolvent clause of c_1 and c_2 .

Principle of resolution

In this situation, f and f ∪ {r} are equivalent: it is the basis for the resolution algorithm.

Philippe Laroque

Outline Introduction searching Pb solving

Algorithms Expert Systems Logics basics Formal systems **PC(0)** BC(1) while $\emptyset \notin f$ choose $l, c_1, c_2 / \begin{cases} l \in c_1 \\ \neg l \in c_2 \end{cases}$ if impossible exit(failure) compute rreplace f with $f \cup \{r\}$

Resolution algorithm

Philippe Laroque

Exercise

э

Outline Introduct

searching

Pb solving

Algorithms Expert Systems Logics basio

system

PC(0)

PROLOG Fuzzy logic show that p is a logical consequence of $(p \lor q) \land (p \lor r) \land (\neg q \lor \neg r)$ We then try to show that $f = \{(p \lor q)_{(1)}, (p \lor r)_{(2)}, (\neg q \lor \neg r)_{(3)}, \neg p_{(4)}\}$ is inconsistent.

イロト イロト イヨト イヨト

Introduction to Al

Philippe Laroque

PC(0)

show that p is a logical consequence of

$$(p \lor q) \land (p \lor r) \land (\neg q \lor \neg r)$$

We then try to show that
 $f = \{(p \lor q)_{(1)}, (p \lor r)_{(2)}, (\neg q \lor \neg r)_{(3)}, \neg p_{(4)}\}$ is inconsistent.

1

automatic:manual:
$$5: p \lor \neg r$$
 (1,3) $5: q$ (1,4) $6: q$ (1,4) $6: r$ (2,4) $7: p \lor \neg q$ (2,3) $7: \neg r$ (3,5) $8: r$ (2,4) $8: \emptyset$ (6,7) $9: p$ (2,5)

÷. *

. . .

 $13:\neg q$ (4,7) 14:0 (4,9)

æ

Introduction to Al

Philippe Laroque

Outline Introductio searching

Pb solving

Algorithms Expert Systems Logics basic Formal systems

PC(0) PC(1) PROLO

Proove the "case disjunction": if a (true) hypothesis implies a disjunction, and each member of the disjunction imply the same conclusion, then the conlusion is true: $\begin{bmatrix} h & h \Rightarrow (n \lor a), n \Rightarrow c, n \Rightarrow c \end{bmatrix} \models c$

$$\{h,h \Rightarrow (p \lor q), p \Rightarrow c,q \Rightarrow c\} \models c$$

Introduction to Al

Philippe Laroque

Outline Introductic searching

Pb solving

Algorithms Expert Systems Logics basi Formal

PC(0)

PROLOG Fuzzy logic

Proove the "case disjunction": if a (true) hypothesis implies a disjunction, and each member of the disjunction imply the same conclusion, then the conlusion is true:

$$\{h, h \Rightarrow (p \lor q), p \Rightarrow c, q \Rightarrow c\} \models c f = \{h_{(1)}, (\neg h \lor p \lor q)_{(2)}, (\neg p \lor c)_{(3)}, (\neg q \lor c)_{(4)}, \neg c_{(5)}\}$$

Introduction to Al

Philippe Laroque

Outline Introduction searching

I D SOLAINE

Expert

Logics basic: Formal systems PC(0) PC(1) PROLOG Proove the "case disjunction": if a (true) hypothesis implies a disjunction, and each member of the disjunction imply the same conclusion, then the conlusion is true: $\begin{cases} h & h \Rightarrow (n \lor a), n \Rightarrow c, n \Rightarrow c \end{cases}$

$$\{h, h \Rightarrow (p \lor q), p \Rightarrow c, q \Rightarrow c\} \models c$$

$$f = \{h_{(1)}, (\neg h \lor p \lor q)_{(2)}, (\neg p \lor c)_{(3)}, (\neg q \lor c)_{(4)}, \neg c_{(5)}\}$$

$$6: p \lor q (1, 2, h)$$

$$7: \neg p (3, 5, c)$$

$$8: \neg q (4, 5, c)$$

$$9: q (6, 7, p)$$

$$10: \emptyset(8, 9, q).$$

- Contraction Co

Horn clauses

イロト イポト イヨト イヨト

Definition

Introduction

Philippe Laroque

PC(0)

A *Horn clause* is a clause which contains at most 1 positive literal.

- Base for "if then conclusion"
- If no hypothesis, the clause is called a fact
- Advantage: resolution algorithm is simpler

Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems Logics basi Formal

PC(0) PC(1) PROLOG Fuzzy logi

Resolution algorithm for Horn clauses

```
while \emptyset \notin f
choose p, c/\neg p \in c
if impossible exit(failure)
replace f with f - c \cup (c - \{\neg p\})
```

• NB: always terminate, since 1 literal less at each iteration

イロト イロト イヨト イヨト

э

• If N literals in f, $C = O(N^2)$

Philippe Laroque

PC(1)

Introduction to the basic techniques of Al

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
 - Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

PC(1) |

to Al Philippe Laroque

Introduction

Outline Introduction searching

Pb solving

Algorithm Expert

Logics basics Formal systems PC(0) PC(1) PROLOG

- $\Sigma(1) = \{x, y, ...\}$ (variables: <var>) $\cup \{a, b, ...\}$ (individual constants <var>) $\cup \{f, g, ...\}$ (functional constants <fct>) $\cup \{p, q, ...\}$ (predicate constants <pct>) $\cup \{\forall, \land, \Rightarrow, \Leftrightarrow\}$ (binary logical connectors <blc>) $\cup \{\exists, \forall\}$ (quantifiers <q>) $\cup \{\neg\}$
- F(1):<wff> = <at> | ¬<wff> |
 (<wff><blc><wff>) | (<q><var>)<wff>
 cat> = <pf> | (<t> = <t>)
 <t> = <var> | <ff>
 <ff> = <fct>([<t>[, <t>]*]?)
 <pf> = <pct>([<t>[, <t>]*]?)
 </pt>

PC(1) ||

Outline

Introductio

Introduction to Al

> Philippe Laroque

Pb solving

Algorithm Expert

Logics basic Formal systems PC(0) PC(1) PROLOG Fuzzy logic • A(1) = A(0) (except formulas in F(1)), plus: $(\forall x, p(x)) \Rightarrow p(t)(any term)$ $((p \Rightarrow q) \Rightarrow (p \Rightarrow (\forall x, p(x))))$ (x is not free in p)

•
$$R(1) = MP + A \vdash (\forall x, A)$$
 (generalization rule)

NB: T(1) is not recursive (an infinity of possible interpretations for formulas)

Bound variables

э

Definition

Introduction to Al

> Philippe Laroque

PC(1)

Let $V_b(f)$ be the set of "bound" variables of formula f. It is defined constructively:

• $V_b(< at >) = \emptyset$

•
$$V_b(f \Rightarrow g) = V_b(f) \cup V_b(g)$$

•
$$V_b(\neg f) = V_b(f)$$

•
$$V_b(\forall x, f) = V_b(f) \cup \{x\}$$

Free variables

・ロット (雪) () () () ()

э

Definition

Introduction

Philippe Laroque

PC(1)

Let $V_f(f)$ be the set of "free" variables of formula f. It is defined constructively:

- $V_b(< at >) = V(< at >)$
- $V_f(f \Rightarrow g) = V_f(f) \cup V_f(g)$
- $V_f(\neg f) = V_f(f)$
- $V_f(\forall x, f) = V_f(f) \{x\}$

A formula without any free variable is said to be CLOSED

Examples

Introduction to Al

Philippe Laroque

Outline Introduction searching

- Algorithms
- Expert Systems

Logics basic Formal systems PC(0) PC(1) PROLOG • $p(f(x, y)) \lor (\forall z, r(a, z))$ $V_b = \{z\}, V_f = \{x, y\}$

•
$$(\forall x, p(x, y, z)) \lor (\forall z, (p(z) \Rightarrow r(z)))$$

 $V_b = \{x, z\}, V_f = \{y, z\}$

•
$$\forall x, \exists y, (p(x, y) \Rightarrow (\forall z, r(x, y, z)))$$

 $V_b = \{x, y, z\}, V_f = \emptyset$

Substitution

イロト イロト イヨト イヨト

э

Introduction to Al

Philippe Laroque

Outline Introduction searching Pb solving

Algorithms Expert Systems Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Definition

A substitution is an application

$$\sigma: < var > \longrightarrow < t > \ x \longmapsto t$$

 σ is said to be *finite* if $\sigma(x) = x$ almost everywhere. By extension: $\sigma(t)$ is the term obtained by replacing each variable in t with its image by σ

Example

Example

Introduction

Philippe Laroque

PC(1)

 $\sigma = \{(x, f(x)), (y, g(x, z))\}, t = g(f(x), g(f(z), y)) \text{ gives} \\ \sigma(t) = g(f(f(x)), g(f(z), g(x, z)))$

NB: \circ (composition law of substitutions) is internal in $\langle t \rangle$, associative and has a neutral element, the identity (it's a monoïd)

Instanciation

Definition

Introduction

Philippe Laroque

PC(1)

Let t_1, t_2 be two terms. t_2 is an *instance* of t_1 if $\exists \sigma, t_2 = \sigma(t_1)$. If $V(t) = \emptyset$, t is said to be *completely instanciated*. A formula f is *valid* iff all of its instances are valid. A formula f is *consistent* iff one of its instances is consistent.

Prenex form

Definition

Introduction

Philippe Laroque

PC(1)

A sentence is in *prenex* form if all its quantifiers come at the very start, i.e., no quantifiers are within the scope of a truth-functional connective.

Theorem

Any formula has a prenex form which is equivalent

Philippe Laroque

PC(1)

Equivalent prenex form

Proof.

By construction:

- $\textcircled{0} \hspace{0.1 cm} \mathsf{eliminate} \Leftrightarrow \mathsf{and} \Rightarrow \\$
- ② rename bound variables until $V_b \cap V_f = \emptyset$
- remove useless quantifiers
- put \neg as close as possible to $< pct >: \neg \forall x, p \longrightarrow \exists x, \neg p, \neg (p \land q) \longrightarrow (\neg p \lor \neg q), etc.$
- So reject quantifiers to the beginning of the formula: (∀x, p ∧ ∀x, q) → ∀x, (p ∧ q) ((∀x, p) ∧ q) → ∀x, (p ∧ q) (if q does not contain x), etc.

・ロット (雪) () () () ()

э

Example

Introduction to AI

Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems

Logics basic Formal systems PC(0) PC(1) PROLOG Fuzzy logic

$$\begin{aligned} &\forall x \left(p(x) \land \forall y, \exists x \left(\neg q(x, y) \Rightarrow \forall z, r(a, x, y) \right) \right) \\ &\forall x \left(p(x) \land \forall y, \exists x \left(\neg \neg q(x, y) \lor \forall z, r(a, x, y) \right) \right) \\ &\forall x \left(p(x) \land \forall y, \exists u \left(q(u, y) \lor \forall z, r(a, u, y) \right) \right) \\ &\forall x \forall y \left(p(x) \land \exists u \left(q(u, y) \lor r(a, u, y) \right) \right) \\ &\forall x \forall y \exists u \left(p(x) \land (q(u, y) \lor r(a, u, y) \right) \right) \\ &\mathsf{NB: the prenex form is not unique} \end{aligned}$$

NCF in CP(1)

Introduction to Al

Philippe Laroque

Introductio

Pb solving

Algorithm: Expert Systems

Logics basi Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Theorem

Any wff has a ncf which is equivalent

Skolemization

Outline

Introduction

Philippe Laroque

Introductio

- Ph solving
- Algorithms _
- Systems
- Logics basic Formal systems PC(0) PC(1)

PROLOG Fuzzy logic

- Further simplification of a ncf.
- Principle:
 - Replace any existencially-quantified variable with a function of the universally-quantified variables than come before it in the formula
 - Remove all occurrences of ∀ (all variables are implicitly universally quantified)

Philippe Laroque

Outline Introduction searching

Odinic Algorithms

System

Logics basics Formal systems PC(0) PC(1) PROLOG

Example of skolemization

Example

 $\begin{aligned} &\forall x \left(p(x) \land \forall y, \exists x \left(\neg q(x, y) \Rightarrow \forall z, r(a, x, y) \right) \right) \text{ gives the ncf} \\ &\forall x \forall y \exists u \left(p(x) \land \left(q(u, y) \lor r(a, u, y) \right) \right) \text{ which is "skolemized" in} \\ &(p(x) \land \left(q(f(x, y), y) \lor r(a, f(x, y), y) \right)) \end{aligned}$

Unification

Definition

Unification is resolution applied to skolem forms. It is the basic mechanism of PROLOG

Principle:

Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Introduction to Al

> Philippe Laroque

- c₁, c₂/c₁ ∋ l₁, c₂ ∋ ¬l₂, V(c₁) ∩ V(c₂) = Ø (possibly after some renaming) and l₁ and l₂ are unifiable (i.e. they have a common instance).
- Consider $c_1', c_2'/l_1' = l_2' = l'$ and $r = (c_1' \{l'\} \cup c_2' \{l'\}$
- Then $f \cup r$ is a logical consequence of f

Algorithm

Laroque

Introduction searching

Introduction to Al

Philippe

Pb solving

Algorithm Expert Systems

Formal systems PC(0) PC(1) PROLOG

while
$$\emptyset \notin f$$

choose $l_1, l_2, c_1, c_2 / \begin{cases} l_1 \in c_1 \\ \neg l_2 \in c_2 \end{cases}$ and (l_1, l_2)
unifiable
if impossible exit(failure)
compute r
replace f with $f \cup \{r\}$

Kunstina Capital イロトイロ・イモートモート モーシーマー

Philippe Laroque

PROLOG

Introduction to the basic techniques of Al

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
 - Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

Philippe Laroque

- Outline Introduction searching
- Pb solving
- Algorithms Expert Systems
- Logics basic Formal systems PC(0) PC(1)

PROLOG Fuzzy logic

Introduction to PROLOG

- Unification between skolemized Horn clauses of PC(1)
- The positive literal is separated from the other (negative) literals with a "⊢" sign ("if")
- Example: compute the gcd of two positive integers x and y
 - if x is equal to y, the result is x
 - if x is greater (*resp.* less) than y, the result is the same as the gcd of (x y) and y (*resp.* x and (y x)).

・ロット (雪) () () () ()

э

Philippe Laroque

Outline Introduction searching Pb. solving

Algorithm: Expert Systems

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

PROLOG-like notation

Let's write gcd(X, Y, Z) for "Z is the gcd of X and Y". We get 3 clauses:

1: gcd(X,X,X). % variables are in uppercase

- 2: $gcd(X,Y,Z) \vdash X>Y$, gcd(X-Y,Y,Z).
- 3: $gcd(X, Y, Z) \vdash Y > X, gcd(X, Y X, Z)$.

Attention

Expressions in predicates must be "matchable": Rule 2 for instance must be written $gcd(X,Y,Z) \vdash X>Y$, DIFF is X-Y, gcd(DIFF,Y,Z).

Let's compute the gcd of 4 et 6: we add the goal \vdash gcd(4,6,Z).

Derivation Example

Outline

Introduction to Al

> Philippe Laroque

searching

Pb solving

Algorithms Expert

Systems

Logics basic Formal systems PC(0) PC(1) PROLOG

Fuzzy logic

4: gcd(4,6,Z)

- 5: gt(6,4),gcd(4,2,Z) // 3:X=4,Y=6
- 6: gt(4,2),gcd(2,2,Z) // 2:X=4,Y=2
- 7: Ø // 1:X=2,Z=2

So gcd(4, 6) = 2 (final value of Z)

Derivation tree

Outline Introduction searching

Introduction

Philippe Laroque

Algorithm: Expert

Logics basic: Formal systems PC(0) PC(1) PROLOG

Fuzzy logic

- The goal is matched against the goal part of each rule
- If a rule matches, all its hypotheses are added as subgoals
- This leads to a tree-like structure (the *derivation tree*) which is visited using a depth-first, left-handed method: the order in which rules are written *is* significant!

Philippe Laroque

Outline Introduction searching

Pb solving

Algorithms Expert Systems

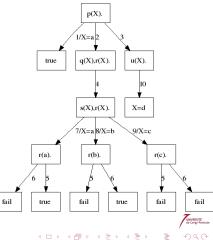
Logics basi Formal systems PC(0) PC(1) PROLOG

Fuzzy logic

Program P	cl. #
p(a).	1
p(X) := q(X), r(X).	2
p(X) := u(X).	3
q(X) := s(X).	4
r(a).	5
r(b).	6
s(a).	7
s(b).	8
s(c).	9
u(d).	10

Simple example

We want to see what happens for goal $\vdash p(X)$.:



Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems

ogics basics Formal systems PC(0) PC(1) PROLOG

Fuzzy logic

Unification in PROLOG

- depth-first traversal of derivation tree
- if left-most subgoal unifies with head of side clause, then the subgoal is replaced with the body of the side clause:

```
g1,g2,...
h :- b1,b2,...
----- // if g1 unifies with h
b1,b2,...,g2,...
```

- N.B.: some variables in (b_i) and (g_j) have been bound during unification
- If the tail of a rule is empty $(b_i) = \emptyset$ then subgoal g_1 can be removed

 When all subgoals are removed along a path, a "yes" is generated

Simple examples

イロト イロト イヨト イヨト

Outline

Introduction

Introduction to Al

> Philippe Laroque

searching

Pb solving

Algorithms Expert

Systems

Logics basic Formal systems PC(0) PC(1)

PROLOG Fuzzy logic

> Philippe Laroque

- Introduction
- searching
- Pb solving
- Algorithms
- Systems
- Logics basics Formal systems PC(0) PC(1)

PROLOG Fuzzy logic

Several built-in PROLOG goals

- trace, notrace
- true, fail
- [fileName] loads fileName.pl (syn. consult ('fileName.pl'))
- Numerical comparisons < <= >= >
- is : logical variable (numerical) binding
- Type predicates integer (X), real (X), string (X)...

ヘロト ヘロト ヘビト ヘビト

э

Examples (2)

ヘロト ヘ戸ト ヘヨト ヘヨト

Introduction searching

Introduction to Al

> Philippe Laroque

Pb solving

Algorithms Expert Systems

Logics basic Formal systems PC(0) PC(1) PROLOG

PROLOG Fuzzy logic • matching and equality: = $\ = \ =$

- call(P) forces P to be a goal; same success/failure
- ! cut predicate
- not as if defined by (exercise after cut def.)

```
not(P) :- call(P), !, fail.
not(P).
```


Philippe Laroque

- Outline Introductio
- Algorithms Expert Systems
- Logics basics Formal systems PC(0) PC(1) PROLOG
- Fuzzy logic

The "!" (cut) predicate

- branches of the derivation tree preceeding the "!" are eliminated from the backtrack process
- Variables bound at the time the "!" is encountered stay bound to the same value
- Ex: previous set of clauses, and goals "p(X), !.", "r(X), !, s(Y)." and "r(X), s(Y), !.":
 - ?- p(X),!.
 X = a ;
 No
 ?- r(X),s(Y).
 X = a Y = a ;
 X = a Y = b ;
 X = a Y = c ;
 ...
 X = b Y = c ;
 No

Philippe Laroque

Outline

searching

Pb solving

Algorithm: Expert

Logics basics Formal systems PC(0) PC(1) PROLOG

?- r(X), !, s(Y). X = a Y = a ; X = a Y = b ; X = a Y = c ; No ?- r(X), s(Y), !. X = a Y = a ; No

The cut operator (2)

Philippe Laroque

Outline Introductio

```
Pb solving
```

Algorithms

```
Expert
Systems
```

Logics basics Formal systems PC(0) PC(1) PROLOG

Fuzzy logic

The cut operator (3)

```
red(a). black(b).
color(P,red) :- red(P),!.
color(P,black) :- black(P),!.
color(_,unknown).
```

- What happens if no "!" ? (examine color (X, red) and color (a, Y))⁵
- What happens to goal p(X) if clause #2 is replaced with p(X) :- q(X), !, r(X)?

?- p(X). X = a ? ; X = a yes

⁵respectively "a" then "No", and "red" then ≝unknown" ≡ ► < ≡ ► ⊂ ∞

Hanoi towers

Introduction to Al

Philippe Laroque

Outline

- Introduction
- Pb solving

Algorithms Expert Svstems

```
Logics basics
Formal
systems
PC(0)
PC(1)
PROLOG
```

PROLOG Fuzzy logic

- Simple example of recursion: move N disks from pin p_1 to pin p_2 using pin p_3 , with a constraint: a larger disk can never be placed above a narrow one.
- Predicate: hanoi(N, from, to, using)

```
hanoi(1,I,F,_) :-
    format("moving from %d to %d\n",[I,F]).
hanoi(N,I,F,AUX) :- N>1,
    N1 is N-1,
    hanoi(N1,I,AUX,F),
    hanoi(1,I,F,AUX),
    hanoi(N1,AUX,F,I).
```


Philippe Laroque

Fuzzy logic

Introduction to the basic techniques of Al

- History
- Al techniques

2 Searching in a state space

- Basic notions
- Production Systems
- Enumeration algorithms
- Solving Problems by Decomposition
 - AND-OR Trees
 - Game Algorithms
 - MinMax Algorithm
 - Alpha-Beta Algorithm
- 5 Expert Systems
 - Introduction
 - Structure of a ES
- 6 Logics basics
 - Formal systems
 - Propositional calculus PC(0)

Outline

イロト イポト イヨト イヨト

Brief history

Outline Introducti

Introduction to Al

> Philippe Laroque

- searching
- Pb solving

Algorithms

Systems

Logics basic: Formal systems PC(0) PC(1) PROLOG Fuzzy logic

- Original paper: L.A. Zadeh 65
- Fuzzy logic & neural networks: E. Mamdani (1973)
- 1st "fuzzy" VLSI: 1989

Philippe Laroque

- Outline Introduction
- searching
- Pb solving
- Algorithms Expert Systems
- Logics basics Formul systems PC(0) PC(1) PROLOG Fuzzy logic

Principle and applicability

- Idea: switch from binary, "true/false" logic to a measure of uncertainty in truth
- Base: theory of sets → continuum of grades of membership (membership function in [0, 1])
- Accurate if
 - very complex process without simple mathematical model
 - non-linearity
 - must deal with linguistic, human expert knowledge

Definitions

Definitions

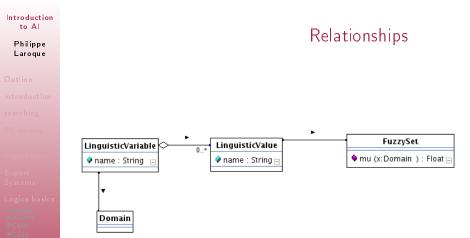
Introduction

Philippe Laroque

Fuzzy logic

fuzzy set: set of pairs $(x, \mu(x))$ where μ takes values in [0, 1]linguistic variable: variable which represent process / control state, and whose value are defined in linguistic terms linguistic value: fuzzy set mapping crisp values to degree of membership to this value of the linguistic variable universe of discourse: set of possible linguistic values

Land and a land a lan



PROLOG Fuzzy logic

くロシュロシュヨシュヨシュヨションの()

Example

イロト イポト イヨト イヨト

Example

 $T(emperature) = \{ negative big, negative medium, negative \}$ small, close to zero, positive small, positive medium, positive big } Positive small 0.8 temperature х

.

Introductio

Introduction to Al

> Philippe Laroque

Pb solving

Algorithms Expert Systems

Logics basic Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Operators

・ロット (雪) () () () ()

э

Philippe Laroque

Introduction to Al

Introduction

- searching
- Pb solving

Algorithms

Expert Systems

Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

- Several possible sets of operators. Most common:
 - $\mu(\neg p) = 1 \mu(p)$
 - $\mu(p \lor q) = max(\mu(p), \mu(q))$ (algebraic sum,...)
 - $\mu(p \land q) = min(\mu(p), \mu(q))$ (algebraic product,...)
- Hedges (modifiers):
 - very: $\mu(very(x)) =_{def} \mu(x)^2$
 - more or less: $\mu(mol(x)) =_{def} \sqrt{\mu(x)}$

Linguistic rules

э

Outline Introducti

Introduction to Al

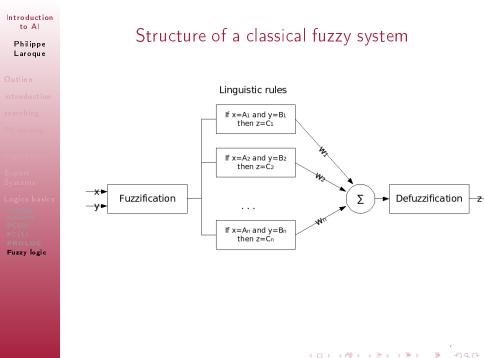
> Philippe Laroque

Pb solving

Algorithms Expert Systems

Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

- Two parts, *antecedent* (premise): if ..., and *consequent*: then ...
- $\mu(cons) =_{def} \mu(premise)$
- Fuzzy controller: set of fuzzy linguistic rules.



Classical steps

Introduction

Introduction to Al

> Philippe Laroque

- searching
- Pb solving

Algorithms _

- Expert Systems
- Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

- Fuzzification: measure of input variable → degree of membership for every fuzzy set of the universe of discourse
- Omputation of each rule *firing strength* (or *weight*) using operators (min)
- Generation of *consequent value* for each rule and computation of $\mu_C(z)$
- Oefuzzification: generation of the crisp output value(s)

Philippe Laroque

- Outline Introduction
- searching
- Pb solving
- Algorithms Expert
- Logics basi Formal systems PC(0)

PROLOG Fuzzy logic

Types of fuzzy reasoning

- Tsukamoto: if output membership function is increasing, then the overall output can be a weighted average of generated crisp output values
- Lee: operation MAX on the qualified fuzzy outputs, overall output is the center of gravity (most common)
- Takagi and Sugeno: each rule's output is a linear combination of input variables; overall crisp output is their weighted average

・ロット (雪) () () () ()

Philippe Laroque

Outline

- Introduction
- searching
- Pb solving

Algorithms

- Expert Systems
- Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Concrete application example

- Fuzzy air-conditioned system (Mitsubishi) handling weather changing conditions
 - 50 rules, 6 linguistic variables (room and wall temperature, ...)
 - prototype: 4 man.days, tests and integration: 20 man.days, optimization: 80 man.days
 - implemented on a standard micro-controller
 - results: startup process time reduced by 40%, much more robust to interferences (window opening...), less sensors, 24% energy saved.

A B > A E > A E >

Philippe Laroque

Outline Introduction searching

Algorithms Expert Systems Logics basic

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

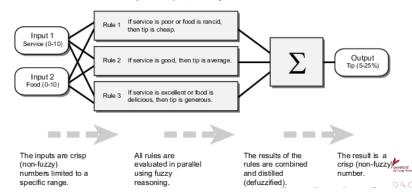
A simple but complete example

Drawn from the *mathworks* site (http://www.mathworks.com):

the system computes the tip to give after

- quality of food
- quality of service

Dinner for two a 2 input, 1 output, 3 rule system



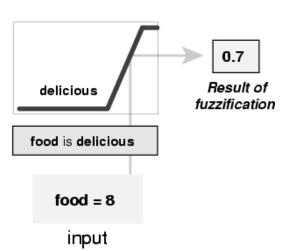
> Philippe Laroque

Outline Introduction searching Pb. solving

Algorithms Expert Systems

Formal systems PC(0) PC(1) PROLOG Fuzzy logic

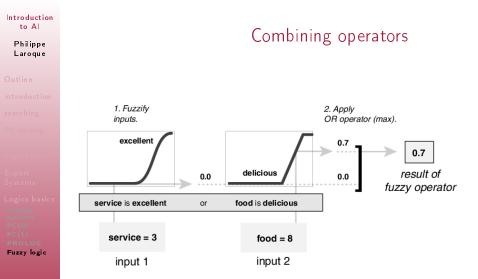
1. Fuzzify inputs.



ヘロト 人間 ト 人 ヨト 人 ヨト

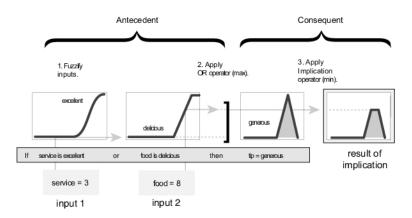
э

Step 1: fuzzification



Step 2: Firing rules

ヘロト ヘ戸ト ヘヨト ヘヨト



Introduction to Al

> Philippe Laroque

Fuzzy logic

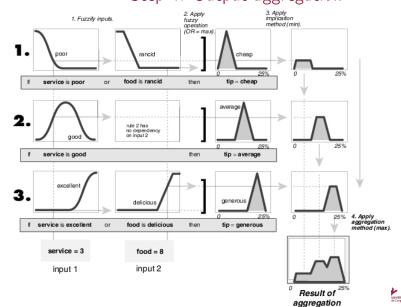
э

Philippe Laroque

Outline Introduction searching Pb solving

Algorithms Expert Systems

Formal systems PC(0) PC(1) PROLOG Fuzzy logic



Step 4: Output aggregation

イロト イポト イヨト イヨト

э

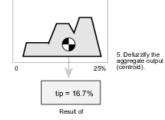
Philippe Laroque

Outline Introductior searching

Pb solving

Algorithms Expert Systems

Logics basic Formal systems PC(0) PC(1) PROLOG Fuzzy logic



deluzzification

Step 5: defuzzification

Bibliography I

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

to Al Philippe Laroque

Introduction

Outline Introductio

- searching
- Pb solving

Algorithms Expert Systems

Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

- Colmerauer, A. "Prolog in 10 figures", *in* Communications of the Association for Computing Machinery, 28(12):1296-1310, 1985
 - Kleene, S. C. "Mathematical Logic", New York: Dover, 2002.
- C.C. Lee , "Fuzzy logic in control systems: fuzzy logic controller - part 1 & 2", IEEE Trans. on Systems, Man and Cybernetics, 20 (2), pp 404–435, 1990.
- Levy, David N.L. "How Computers Play Chess, New York", Computer Science Press, 1991⁶
- J. McCarthy, "A Basis for a Mathematical Theory of Computation", in Computer Programming and Formal Systems, North Holland, 1961

э

Bibliography II

to Al Philippe Laroque

Introduction

- Outline Introductio searching
- Pb solving
- Algorithms Expert
- Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

E. Mamdani, S. Assilian, "An experiment in Linguistic Synthesis with a Fuzzy Logic Controller", Int. Journal on Man-Machine Studies, 7, 1973, pp 1–13.

- Minsky, M. "The Society of Mind", Simon & Schuster (March 15, 1988)
- A. Newell & H. Simon, "The Theory of Human Problem Solving", reprinted in Collins & Smith (eds.), Readings in Cognitive Science, section 1.3.

- N.J. Nilsson "Principles of Artificial Intelligence", Tioga Publishing Co., 1980⁷
- Papert, S. "Mindstorms: Children, Computers, and Powerful Ideas", New York, Basic Books, 1980

] Russel, S., Norvig, P., "Intelligence artificielle", Pearson education, 2006 (2e edition)

Bibliography III

Introduction to Al

Philippe Laroque

Outline Introduction searching Ph. solving

Algorithms Expert Systems

Logics basic: Formal systems PC(0) PC(1) PROLOG Fuzzy logic

Sterling L., Shapiro E., "The Art of PROLOG", MIT Press

- T. Takagi, M. Sugeno, "Derivation of fuzzy control rules from human operator's control actions", Proc. of the IFAP Symp. on fuzzy information, knowledge representation and decision analysis, pp 55–60, july 1983
- S. Tanimoto, "The Elements of Artificial Intelligence Using Common Lisp", W.H. Freeman & Co, 1995⁸
- Tsukamoto T., "An approach to fuzzy reasoning method", in Advances in Fuzzy Set Theory and Applications, M. Gupta, R.K. Ragade & R.R. Yager, eds., North Holland, 1979, pp. 137–149

Philippe Laroque

Outline

- searching
- Pb solving

Algorithms

- Expert Systems
- Logics basics Formal systems PC(0) PC(1) PROLOG Fuzzy logic

J. Weizenbaum, "ELIZA-A Computer Program For the Study of Natural Language Communication Between Man and Machine", Communications of the ACM Volume 9, Number 1 (January 1966): 36-35.

Bibliography IV

N. Wiener, "Cybernetics - Control and Communication in the Animal and the Machine", MIT Press, 1948 (reed. 1961).

L.A. Zadeh, "Fuzzy sets", Inf. Control 8, 338-353, 1965.

 $^{6}\mbox{This}$ reference introduces the game of chess and have well explanation of minimax algorithm and alpha_beta cutoff

⁷Good general reference on artificial intelligence and on minimax trees. ⁸Very clear and complete, though using a - now - esoteric programming language