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The Problem

Numerous problems fall into the "search of an extremum" (minimum
or maximum) of a given cost � or objective / pro�t � function problem

Several approaches, including MIP, can solve the problem in the linear
case

hard to predict computation time given the input parameters
sometimes a "good" solution is enough if one can get it from a faster
algorithm
unsu�cient robustness when faced with great variations in the model
dynamics

MAS approach, based on self-organization principles, may be an
answer to such limitations

however solution is not optimal. Is it "good"?
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Our Test Case

Warehouse location problem: distribute a set of products to a set of
client areas from production plants and / or warehouses

production plant capacity is su�cient to satisfy the customers'
requests; warehouse capacity is limited

We want to know:

which warehouse is used and where it is located
the product �ows (plant/warehouse, plant/customer,
warehouse/customer)
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MIP Model

Objective function: sum of delivery and warehouse costs (to minimize)

Decision variables:

existence of a warehouse at a given location (binary)
�ows (plant - warehouse, plant - customer, warehouse - customer)

Constraints:

satisfy customer area requests
respect warehouse capacity
respect conservation of �ows

Solving algorithm: Branch-and-bound
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MAS Model

motivation-driven agents

vision "sensor", landmarks & place
cells

"comfort" threshold ; falling below
minimum comfort value triggers
planning strategy

"cognitive" agents embed a
cognitive map to retrieve complex
paths leading to resources

hebbian learning rules on cognitive
map weights allow for learning new
paths and forgetting obsolete ones
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Agent Navigation
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Warehouse Creation

Agents can transport small quantities of goods, and store them
when / where they want

Transport and deposit decisions are probabilistic, based on
observations of certain social insects behavior: P(n) (prob. for deposit
when n units of resources) is

P(n) = 1− (1− p)n
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Experiments

Fixed resources (plants)
Environment = 20x20 square grid, cell = (empty, plant, warehouse,
customer)
10 to 20 agents ("trucks") per test run
results averaged over ten successive runs (due to randomness in agents
behavior)
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Computing the Results

1 minimum distance from Wi to a MAS �correspondent� W ′
i :

di = min
j

(
d
(
Wi ,W

′
j

))
2 average distance for a given experiment Expk :

d(Expk) =

(
n∑

i=1

di

n

)
+ p

(∣∣n′ − n
∣∣)

3 average results on Ne experiments:

d(MAS ,MIP) =
1

Ne

Ne∑
i=1

d(Expi )
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First Results

The MAS solution (left) is compared to both the MIP solution (best
possible, right) and a randomly generated solution (middle):

MAS solution random solution

average distance 19.6831 49.4644

standard deviation 8.24 15.73
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Perspectives

Next important issues:

1 complexity of the MAS approach when the environment size changes?

2 what happens to the MIP and MAS algorithms when things change
with time?

MAS: cognitive map helps for agents adaptation
MIP: modeling technique under construction
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Summary

Accuracy of a MAS approach to simple optimization problems

MAS solution obtained after a short - and predictible - delay; "quality"
not always predictible

MIP approach gives best possible results, time needed not always
predictible
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