
Part 2 :

Pair programming, Test Driven Development and Continuous
Integration

Tianxiao LIU - Master IISC 1 – University of Cergy-Pontoise

 We help each other succeed.

 Pair programming may seem weird when you are not used to it yet.

 It's an extremely powerful approach !
 It may increase your brainpower.

 Basic principle of pair programming
 Two roles : the driver and the navigator

 Driver, the person who codes

 Navigator, whose job is to think

 What do we think about, as navigator ?
 What tasks (steps) to work on next …

 How the work best fits into

the overall design…
2

 Frequently asked question : is pairing wasteful ?
 It is if you think that programming is just typing statements in a programming

language…

 Pair frequently but not exclusively.

 These are all normal feelings !
 Driver : Feel that your navigator is faster you are working on two things

simultaneously !
 Navigator : Expect to feel like you want to step in by taking the keyboard

take your time to help your driver be more productive ! Look for the answers
of your questions…

 The frequency for switching : half hour.

 Expect to feel tired at the end of the day of pairing.

 When a pair goes dark --- talks less, lower their voices or doesn't switch
with other pairs --- it's often a sign of technical difficulty.

3

 Pair on everything you'll need to maintain.

 Allows pairs to form fluidly rather than assigning partners.

 Switch partners when you need a fresh perspective.

 Avoid pairing with the same person for more than a day at a time.

 Sit comfortably, side by side.

 Produce code through conversation. Collaborate, don't critique.

 Switch driver and navigator roles frequently.

4

 We need to understand each other.

 The Domain Expertise Conundrum
 Problem : try to describe the business logic of your system to a non

programmer domain expert, avoiding programmer jargon (ex. design
patterns, coding styles …)

 Conundrum
 Domain experts are rarely qualified to write software.

 Programmers don't always understand the problem domain.

 The only solution
 Programmers should speak the language of their domain experts.

5

 Design your code to use the language of the domain.
 Use terms of the domain to name classes, methods, variables…

 This is the art !
 Reflecting in code how the users of the system think and speak about

their work.

 We refine our knowledge by encoding our understanding of the
domain : gaps in our knowledge would result in bugs.

 Many standard processes are proposed
 Domain modelling

 Domain-centric design

 Domain-driven design

6

True object-oriented design.

 Your ubiquitous language is a living language.

 Learning new things improve the language

 Do not introduce technical debt (mismatch) ugly bugs

7

Agreement to
the changes

•Whole team

•Domain
experts

Clarify your
understanding ?

•Do changes
help ?

•Remove all
jargons

Update the
design

•With the
changes

•Synchronized
refactoring

 We produce well-designed, well-tested, and well-factored code in
small, verifiable steps.

 Programming is a demanding work that requires perfection.

 People are not good at perfection. Software is buggy.

 We need a process that alerts us to programming mistakes.

 TDD : a rapid cycle of testing, coding and refactoring.

 When TDD is used properly, it'll help us improve the design,
document public interfaces and guard against future mistakes.

8

 TDD takes moments to learn and a
lifetime to master.

 It operates in a very short cycle that
repeats over and over again.

 Each cycle will only take a few
minutes, ideally.

 TDD uses small tests to force your to
write your code to make them pass.

9

Think

Red bar

Green bar

Refactor

 Imagine what behavior you want your code to have.

 Think of a small increment (ex. about five lines of code).

 Think of a test
 This test will fail unless that behavior is present.

 Challenge
 It can be difficult to think in small increments.

 Solution : pair-programming
 Driver : try to make the current test pass.

 Navigator : stay a few steps ahead, thinking of tests that will drive the
code to the next increment.

10

 Write the test.
 It's only enough test code for the current increment of behavior.

 It takes only a few lines. If not, try to take a smaller increment next time.

 Code in terms of the class' behavior and its public interface.

 Before behavior implementation (step 3), you test uses inexistent
classes and methods it forces you to design them in step 3.
 The internals of a class : perspective of implementer.

 The externals of a class (API) : perspective of a user of the class.

 Run the test (in the test suite) New test fails. Very good (red bar)

 If the test passes, or it fails in a different way than you expected
Troubleshoot the problem predict what's happening with the code

11

 Now write just enough production code to get the test to pass.

 Don't worry about design purity or conceptual elegance for now.

 Just do what you need to do to make the test pass !

 Run the test again All the tests pass. Green bar

 It fails ?!
 Your partner (navigator) sees the problem. good!

 Nobody sees the problem. Erase the code and try again.

 Key point : remaining in control
 Revert the code to known-good code

 Switch pair roles

12

 Refactor without worrying about breaking anything (the tests pass.).

 Review the code and look for possible improvement
 Ask your navigator if you are pairing

 List all problems (need improvement)
 A series of very small refactorings

 Normally , one or two minute will be enough for each one. (< five min.)

 Run the test after each one, that should still pass.

 No ? Undo all and get back to known-good code.

 Do you best.
 Refactor as many times as you like.

 Refactorings are not supposed to change behavior !

13

 Every day, our code is slightly better than it was the day before.

 Entropy Chaos Mess of spaghetti

 Refactoring reversible work

 Reflective design
 Analyze the design of existing code

 Improve it

 We need code smells : condensed nuggets of wisdom

 Code smell does not necessarily mean that there's a problem
 It may indicate that it's time to "take out the garbage from the kitchen".

14

 Divergent Change (1) and Shotgun Surgery (2) : cohesion problems
 (1) unrelated changes affect the same class : the class involves too many

concepts Split it

 (2) You have to modify multiple classes to support changes to a single idea :
the concept is represented in many places in the code A single home

 Primitive Obsession (3) and Data Clumps (4)
 (3) Represent high-level design concepts with primitive types Encapsulate

the concept in a class

 (4) Several primitives represent a concept as a group. Batches of variables
consistently passed around together. Encapsulation

15

 Time Dependencies (5) and Half-Baked Objects (6)
 (5) A class' methods must be called in a specific order.

 (6) Objects must first be constructed, then initialized with a method call, then
used. For both, the class may have too many responsibilities. Split

 Coddling Nulls (7)
 Null references : a particular challenge to programmers

 Problem : method, that may receive null reference, will return null itself

 Null reference should not be propagated.

 We need a fail fast strategy

 Do not allow null as a parameter to any method, constructor or attribute.

 Null can be allowed only if it has explicitly defined semantics.

 Throw exceptions rather than returning null.

16

 How often should we refactor ?
 Constantly, every day.

 Shouldn't we design our code correctly from the beginning rather than
refactoring (rework) ?
 Perfect design is impossible for large systems.

 Don't bemoan design errors, celebrate your ability to fix them !

 Will large design changes conflict with other team members ?
 Yes, it may conflict. So you need a better management of timing issue.

 Do we need to do test refactoring ?
 Yes absolutely. Tests have to be maintained just as much as production code

does, so they are valid targets for refactoring, too.

17

 We keep our code ready to ship.

 Problem : hidden delay
 Between when the team says "we're done" and when the software is

ready to ship.

 Examples of little things to do before shipping : merging everyone's
pieces together, creating an installer, prepopulating the database…

 We often forget how long these things take !

 The ultimate of CI is to be able to deploy at any time.

 Key point : Be technologically ready to release even if you are not
functionally ready to release.

18

 Integrate your code every few hours.

 Keep your build, tests and other release infrastructure up-to-date.

 Good practice in some industrial projects : a firm rule (optional)
 You have to integrate before going home.

 If you can’t integrate something goes wrong abandon what you did

 Start fresh the next day.

 This is a harsh rule but it may actually work very well.

 Never (almost never) break the build and agree with that as a team !

 CI needs strict environment configuration : hardware and software
 https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-intégration-continue.pdf

19

https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf

 Unit tests focus just on the class or method at hand.

 They run entirely in memory, which makes them very fast.
 Average UT run speed : 100 UTs per second.

 A test is not a UT if :
 It talks to a database.

 It communicates across a network.

 It touches the file system.

 You have do to special things to your environment to run it. Ex. editing
configuration files)

 Mock object allow your test to substitutes its own object (MO) for an
object that talks to the outside world (DB, network, etc.).
 Don't abuse well designed, decoupled system

20

 FIT are the tests which test just one interaction with the outside
world (DB, network, file system, etc.)

 Prepare the external dependency carefully :
 Tests should run exactly the same way every time

 Intermittent failures of FIT are technical debts.

 We don't need too many FIT with N-tiers architecture (well decoupled).

 To ensure that UT and FIT mesh perfectly : EET
 EETs exercise large swaths of the system.

 EETs are very slow : seconds even minutes per test

 Attention : don't use exploratory testing to find bugs !

 The proportion of EETs should be minimized
 We need a well design system, constructed by TDD strategy.

21

 "Of course nobody can understand it… its job security !" --- old joke.

 We are all responsible for high-quality code.

 A real risk : What happens when a critical person goes on holiday,
gets sick ? How much time will you spend training a replacement ?

 Fix problems no matter where you find them
 If you encounter code duplication, unclear names, or even poorly

designed code, we don’t care about who wrote it. Fix it !

 Always leave the code a little better than you found it.

22

