
Part 2 :

Pair programming, Test Driven Development and Continuous
Integration

Tianxiao LIU - Master IISC 1 – University of Cergy-Pontoise

 We help each other succeed.

 Pair programming may seem weird when you are not used to it yet.

 It's an extremely powerful approach !
 It may increase your brainpower.

 Basic principle of pair programming
 Two roles : the driver and the navigator

 Driver, the person who codes

 Navigator, whose job is to think

 What do we think about, as navigator ?
 What tasks (steps) to work on next …

 How the work best fits into

the overall design…
2

 Frequently asked question : is pairing wasteful ?
 It is if you think that programming is just typing statements in a programming

language…

 Pair frequently but not exclusively.

 These are all normal feelings !
 Driver : Feel that your navigator is faster  you are working on two things

simultaneously !
 Navigator : Expect to feel like you want to step in by taking the keyboard 

take your time to help your driver be more productive ! Look for the answers
of your questions…

 The frequency for switching : half hour.

 Expect to feel tired at the end of the day of pairing.

 When a pair goes dark --- talks less, lower their voices or doesn't switch
with other pairs --- it's often a sign of technical difficulty.

3

 Pair on everything you'll need to maintain.

 Allows pairs to form fluidly rather than assigning partners.

 Switch partners when you need a fresh perspective.

 Avoid pairing with the same person for more than a day at a time.

 Sit comfortably, side by side.

 Produce code through conversation. Collaborate, don't critique.

 Switch driver and navigator roles frequently.

4

 We need to understand each other.

 The Domain Expertise Conundrum
 Problem : try to describe the business logic of your system to a non

programmer domain expert, avoiding programmer jargon (ex. design
patterns, coding styles …)

 Conundrum
 Domain experts are rarely qualified to write software.

 Programmers don't always understand the problem domain.

 The only solution
 Programmers should speak the language of their domain experts.

5

 Design your code to use the language of the domain.
 Use terms of the domain to name classes, methods, variables…

 This is the art !
 Reflecting in code how the users of the system think and speak about

their work.

 We refine our knowledge by encoding our understanding of the
domain : gaps in our knowledge would result in bugs.

 Many standard processes are proposed
 Domain modelling

 Domain-centric design

 Domain-driven design

6

True object-oriented design.

 Your ubiquitous language is a living language.

 Learning new things  improve the language

 Do not introduce technical debt (mismatch)  ugly bugs

7

Agreement to
the changes

•Whole team

•Domain
experts

Clarify your
understanding ?

•Do changes
help ?

•Remove all
jargons

Update the
design

•With the
changes

•Synchronized
refactoring

 We produce well-designed, well-tested, and well-factored code in
small, verifiable steps.

 Programming is a demanding work that requires perfection.

 People are not good at perfection.  Software is buggy.

 We need a process that alerts us to programming mistakes.

 TDD : a rapid cycle of testing, coding and refactoring.

 When TDD is used properly, it'll help us improve the design,
document public interfaces and guard against future mistakes.

8

 TDD takes moments to learn and a
lifetime to master.

 It operates in a very short cycle that
repeats over and over again.

 Each cycle will only take a few
minutes, ideally.

 TDD uses small tests to force your to
write your code to make them pass.

9

Think

Red bar

Green bar

Refactor

 Imagine what behavior you want your code to have.

 Think of a small increment (ex. about five lines of code).

 Think of a test
 This test will fail unless that behavior is present.

 Challenge
 It can be difficult to think in small increments.

 Solution : pair-programming
 Driver : try to make the current test pass.

 Navigator : stay a few steps ahead, thinking of tests that will drive the
code to the next increment.

10

 Write the test.
 It's only enough test code for the current increment of behavior.

 It takes only a few lines.  If not, try to take a smaller increment next time.

 Code in terms of the class' behavior and its public interface.

 Before behavior implementation (step 3), you test uses inexistent
classes and methods  it forces you to design them in step 3.
 The internals of a class : perspective of implementer.

 The externals of a class (API) : perspective of a user of the class.

 Run the test (in the test suite)  New test fails.  Very good (red bar)

 If the test passes, or it fails in a different way than you expected 
Troubleshoot the problem  predict what's happening with the code

11

 Now write just enough production code to get the test to pass.

 Don't worry about design purity or conceptual elegance for now.

 Just do what you need to do to make the test pass !

 Run the test again  All the tests pass.  Green bar

 It fails ?!
 Your partner (navigator) sees the problem.  good!

 Nobody sees the problem.  Erase the code and try again.

 Key point : remaining in control
 Revert the code to known-good code

 Switch pair roles

12

 Refactor without worrying about breaking anything (the tests pass.).

 Review the code and look for possible improvement
 Ask your navigator if you are pairing

 List all problems (need improvement)
 A series of very small refactorings

 Normally , one or two minute will be enough for each one. (< five min.)

 Run the test after each one, that should still pass.

 No ? Undo all and get back to known-good code.

 Do you best.
 Refactor as many times as you like.

 Refactorings are not supposed to change behavior !

13

 Every day, our code is slightly better than it was the day before.

 Entropy  Chaos Mess of spaghetti

 Refactoring  reversible work

 Reflective design
 Analyze the design of existing code

 Improve it

 We need code smells : condensed nuggets of wisdom

 Code smell does not necessarily mean that there's a problem
 It may indicate that it's time to "take out the garbage from the kitchen".

14

 Divergent Change (1) and Shotgun Surgery (2) : cohesion problems
 (1) unrelated changes affect the same class : the class involves too many

concepts  Split it

 (2) You have to modify multiple classes to support changes to a single idea :
the concept is represented in many places in the code  A single home

 Primitive Obsession (3) and Data Clumps (4)
 (3) Represent high-level design concepts with primitive types  Encapsulate

the concept in a class

 (4) Several primitives represent a concept as a group. Batches of variables
consistently passed around together.  Encapsulation

15

 Time Dependencies (5) and Half-Baked Objects (6)
 (5) A class' methods must be called in a specific order.

 (6) Objects must first be constructed, then initialized with a method call, then
used.  For both, the class may have too many responsibilities.  Split

 Coddling Nulls (7)
 Null references : a particular challenge to programmers

 Problem : method, that may receive null reference, will return null itself

 Null reference should not be propagated.

 We need a fail fast strategy

 Do not allow null as a parameter to any method, constructor or attribute.

 Null can be allowed only if it has explicitly defined semantics.

 Throw exceptions rather than returning null.

16

 How often should we refactor ?
 Constantly, every day.

 Shouldn't we design our code correctly from the beginning rather than
refactoring (rework) ?
 Perfect design is impossible for large systems.

 Don't bemoan design errors, celebrate your ability to fix them !

 Will large design changes conflict with other team members ?
 Yes, it may conflict. So you need a better management of timing issue.

 Do we need to do test refactoring ?
 Yes absolutely. Tests have to be maintained just as much as production code

does, so they are valid targets for refactoring, too.

17

 We keep our code ready to ship.

 Problem : hidden delay
 Between when the team says "we're done" and when the software is

ready to ship.

 Examples of little things to do before shipping : merging everyone's
pieces together, creating an installer, prepopulating the database…

 We often forget how long these things take !

 The ultimate of CI is to be able to deploy at any time.

 Key point : Be technologically ready to release even if you are not
functionally ready to release.

18

 Integrate your code every few hours.

 Keep your build, tests and other release infrastructure up-to-date.

 Good practice in some industrial projects : a firm rule (optional)
 You have to integrate before going home.

 If you can’t integrate  something goes wrong  abandon what you did

 Start fresh the next day.

 This is a harsh rule but it may actually work very well.

 Never (almost never) break the build and agree with that as a team !

 CI needs strict environment configuration : hardware and software
 https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-intégration-continue.pdf

19

https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf

 Unit tests focus just on the class or method at hand.

 They run entirely in memory, which makes them very fast.
 Average UT run speed : 100 UTs per second.

 A test is not a UT if :
 It talks to a database.

 It communicates across a network.

 It touches the file system.

 You have do to special things to your environment to run it. Ex. editing
configuration files)

 Mock object allow your test to substitutes its own object (MO) for an
object that talks to the outside world (DB, network, etc.).
 Don't abuse well designed, decoupled system

20

 FIT are the tests which test just one interaction with the outside
world (DB, network, file system, etc.)

 Prepare the external dependency carefully :
 Tests should run exactly the same way every time

 Intermittent failures of FIT are technical debts.

 We don't need too many FIT with N-tiers architecture (well decoupled).

 To ensure that UT and FIT mesh perfectly : EET
 EETs exercise large swaths of the system.

 EETs are very slow : seconds even minutes per test

 Attention : don't use exploratory testing to find bugs !

 The proportion of EETs should be minimized
 We need a well design system, constructed by TDD strategy.

21

 "Of course nobody can understand it… its job security !" --- old joke.

 We are all responsible for high-quality code.

 A real risk : What happens when a critical person goes on holiday,
gets sick ? How much time will you spend training a replacement ?

 Fix problems no matter where you find them
 If you encounter code duplication, unclear names, or even poorly

designed code, we don’t care about who wrote it. Fix it !

 Always leave the code a little better than you found it.

22

