RO T

Part2:

Pair programming, Test Driven Development and Continuous
Integration

Tianxiao LIU - Master 11ISC 1 — University of Cergy-Pontoise

PAIR PROGRAMMING PRINCIPLE

= We help each other succeed.
= Pair programming may seem weird when you are not used to it yet.

= It's an extremely powerful approach !
= It may increase your brainpower.

EFFICIENT

= Basic principle of pair programming
= Two roles : the driver and the navigator
= Driver, the person who codes

= Navigator, whose job is to think ‘ ®
—
= What do we think about, as navigator ? =
oarven
= What tasks (steps) to work on next ... -
= How the work best fits into
the overall design...

HOW TO PAIR

Frequently asked question : is pairing wasteful ?
= It is if you think that programming is just typing statements in a programming
language...

Pair frequently but not exclusively.

These are all normal feelings !
= Driver: Feel that your navigator is faster ® you are working on two things
simultaneously !

= Navigator : Expect to feel like you want to step in by taking the keyboard ©
take your time to help your driver be more productive ! Look for the answers
of your questions...

The frequency for switching : half hour.
Expect to feel tired at the end of the day of pairing.

= When a pair goes dark - talks less, lower their voices or doesn't switch
with other pairs — it's often a sign of technical difficulty.

PAIRING TIPS

= Pair on everything you'll need to maintain.
= Allows pairs to form fluidly rather than assigning partners.

= Switch partners when you need a fresh perspective.

= Avoid pairing with the same person for more than a day at a time.

= Sit comfortably, side by side.
= Produce code through conversation. Collaborate, don't critique.

= Switch driver and navigator roles frequently.

UBIQUITOUS LANGUAGE

= We need to understand each other.

= The Domain Expertise Conundrum

= Problem : try to describe the business logic of your system to a non
programmer domain expert, avoiding programmer jargon (ex. design
patterns, coding styles ...)

= Conundrum
= Domain experts are rarely qualified to write software.

= Programmers don't always understand the problem domain.

= The only solution
= Programmers should speak the language of their domain experts.

UBIQUITOUS LANGUAGE IN CODE SOURCE

= Design your code to use the language of the domain.
= Use terms of the domain to name classes, methods, variables...

= This is the art !

= Reflecting in code how the users of the system think and speak about
their work.

= We refine our knowledge by encoding our understanding of the
domain : gaps in our knowledge would result in bugs.

= Many standard processes are proposed
= Domain modelling

= Domain-centric design True object-oriented design.
= Domain-driven design

REFINING THE UBIQUITOUS LANGUAGE

= Your ubiquitous language is a living language.

= Learning new things = improve the language

Agreement to Clarify your Update the
the changes understanding ? design
e Whole team e Do changes e With the
e Domain help ? changes
experts e Remove all e Synchronized
jargons refactoring

= Do not introduce technical debt (mismatch) = ugly bugs

TEST DRIVEN DEVELOPMENT (TDD)

= We produce well-designed, well-tested, and well-factored code in
small, verifiable steps.

= Programming is a demanding work that requires perfection.
= People are not good at perfection. 2> Software is buggy.

= We need a process that alerts us to programming mistakes.

= TDD: a rapid cycle of testing, coding and refactoring.

= When TDD is used properly, it'll help us improve the design,
document public interfaces and guard against future mistakes.

TDD STANDARD CYCLE

= TDD takes moments to learn and a
lifetime to master.

= |t operates in a very short cycle that
repeats over and over again.

= Each cycle will only take a few
minutes, ideally.

= TDD uses small tests to force your to
write your code to make them pass.

> Think

!

Red bar

'

- Green bar

‘

~[Refactor]

STEP 1: THINK

= Imagine what behavior you want your code to have.
= Think of a small increment (ex. about five lines of code).

= Think of a test
= This test will fail unless that behavior is present.

= Challenge
= |t can be difficult to think in small increments.

= Solution : pair-programming
= Driver : try to make the current test pass.

= Navigator : stay a few steps ahead, thinking of tests that will drive the
code to the next increment.

STEP 2: RED BAR

= Write the test.
= It's only enough test code for the current increment of behavior.

= |t takes only a few lines. = If not, try to take a smaller increment next time.

= Code in terms of the class' behavior and its public interface.

= Before behavior implementation (step 3), you test uses inexistent
classes and methods > it forces you to design them in step 3.

= The internals of a class : perspective of implementer.
= The externals of a class (API) : perspective of a user of the class.

= Run the test (in the test suite) = New test fails. 2 Very good (red bar)

= If the test passes, or it fails in a different way than you expected -
Troubleshoot the problem = predict what's happening with the code

©

STEP 3 : GREEN BAR

Now write just enough production code to get the test to pass.

Don't worry about design purity or conceptual elegance for now.

Just do what you need to do to make the test pass!
Run the test again > All the tests pass. = Green bar

It fails 2!
= Your partner (navigator) sees the problem. = good!
= Nobody sees the problem. = Erase the code and try again.

Key point : remaining in control
= Revert the code to known-good code
= Switch pair roles

STEP 4 : REFACTOR

Refactor without worrying about breaking anything (the tests pass.).

Review the code and look for possible improvement
= Ask your navigator if you are pairing

List all problems (need improvement)
= A series of very small refactorings
= Normally, one or two minute will be enough for each one. (< five min.)
= Run the test after each one, that should still pass.
= No? Undo all and get back to known-good code.

Do you best.
= Refactor as many times as you like.

= Refactorings are not supposed to change behavior !

CODE REFACTORING

Every day, our code is slightly better than it was the day before.
Entropy = Chaos = Mess of spaghetti

Refactoring = reversible work

Reflective design
= Analyze the design of existing code

= Improve it
= We need code smells : condensed nuggets of wisdom

Code smell does not necessarily mean that there's a problem

= [t may indicate that it's time to "take out the garbage from the kitchen".

CODE SMELL AND REFACTORING SOLUTIONS

= Divergent Change (1) and Shotgun Surgery (2) : cohesion problems

= (1) unrelated changes affect the same class : the class involves too many
concepts = Split it

= (2) You have to modify multiple classes to support changes to a single idea:
the concept is represented in many places in the code = A single home

= Primitive Obsession (3) and Data Clumps (4)

= (3) Represent high-level design concepts with primitive types = Encapsulate
the concept in a class

= (4) Several primitives represent a concept as a group. Batches of variables
consistently passed around together. = Encapsulation

©

CODE SMELL AND REFACTORING SOLUTIONS

= Time Dependencies (5) and Half-Baked Objects (6)
= (5) A class' methods must be called in a specific order.

= (6) Objects must first be constructed, then initialized with a method call, then
used. = For both, the class may have too many responsibilities. = Split

= Coddling Nulls (7)

= Null references: a particular challenge to programmers
= Problem : method, that may receive null reference, will return null itself

= Null reference should not be propagated.

= We need a fail fast strategy
= Do not allow null as a parameter to any method, constructor or attribute.
= Null can be allowed only if it has explicitly defined semantics.
= Throw exceptions rather than returning null.

F.A.Q. ABOUT CODE REFACTORING

= How often should we refactor?
= Constantly, every day.

= Shouldn't we design our code correctly from the beginning rather than
refactoring (rework)?
= Perfect design is impossible for large systems.

= Don't bemoan design errors, celebrate your ability to fix them!

= Will large design changes conflict with other team members ?
= Yes, it may conflict. So you need a better management of timing issue.

= Do we need to do test refactoring ?

= Yes absolutely. Tests have to be maintained just as much as production code
does, so they are valid targets for refactoring, too.

©

CONTINUOUS INTEGRATION (CI)

= We keep our code ready to ship.

= Problem : hidden delay

= Between when the team says "we're done'" and when the software is
ready to ship.

= Examples of little things to do before shipping : merging everyone's
pieces together, creating an installer, prepopulating the database...

= We often forget how long these things take!
= The ultimate of Cl is to be able to deploy at any time.

= Key point : Be technologically ready to release even if you are not
functionally ready to release.

PRACTICING (I

= Integrate your code every few hours.
= Keep your build, tests and other release infrastructure up-to-date.

= Good practice in some industrial projects : a firm rule (optional)
= You have to integrate before going home.
= If you can’t integrate > something goes wrong = abandon what you did

= Start fresh the next day.
= This is a harsh rule but it may actually work very well.
= Never (almost never) break the build and agree with that as a team!

= Cl needs strict environment configuration : hardware and software
= https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-intégration-continue.pdf

©

https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf
https://depinfo.u-cergy.fr/~tliu/ens/gpi/gpi6-int�gration-continue.pdf

SUPPORTING Cl :
UNIT TESTS (UT) & MOCK OBJECTS (MO)

= Unit tests focus just on the class or method at hand.

= They run entirely in memory, which makes them very fast.
= Average UT run speed : 100 UTs per second.

= Atestisnota UTif:
= |t talks to a database.

= [t communicates across a network.
= |t touches the file system.

= You have do to special things to your environment to run it. Ex. editing
configuration files)

= Mock object allow your test to substitutes its own object (MO) for an
object that talks to the outside world (DB, network, etc.).

= Don't abuse = well designed, decoupled system

SUPPORTING Cl : FOCUSED INTEGRATION
TEST (FIT) & END-TO-END TESTS (EET)

= FIT are the tests which test just one interaction with the outside
world (DB, network, file system, etc.)

= Prepare the external dependency carefully :
= Tests should run exactly the same way every time
= Intermittent failures of FIT are technical debts.

= We don't need too many FIT with N-tiers architecture (well decoupled).

= To ensure that UT and FIT mesh perfectly : EET
= EETs exercise large swaths of the system.

= EETs are very slow : seconds even minutes per test
= Attention : don't use exploratory testing to find bugs !

= The proportion of EETs should be minimized
= We need a well design system, constructed by TDD strategy.

SUPPORTING CI : COLLECTIVE CODE OWNERSHIP

= "Of course nobody can understand it... its job security !" - old joke.
= We are all responsible for high-quality code.

= Areal risk : What happens when a critical person goes on holiday,
gets sick ? How much time will you spend training a replacement ?

= Fix problems no matter where you find them

= If you encounter code duplication, unclear names, or even poorly
designed code, we don’t care about who wrote it. Fix it !

= Always leave the code a little better than you found it.

