
Part 3 : Planning

Contents : Releasing, planning, slacks and estimate
Tianxiao LIU - Master IISC 1 – University of Cergy-Pontoise

 Group the most valuable features together and release them first
 To achieve startling improvements in value

2

Month 1 2 3 4 5 6 7

Release 1

Release 1
Release 2

$$$$$

$$$ $$$ $$$

$$

$$$

 Releases are painful, aren't they ?
 Flag days on the schedule

 Repository freezes

 Rushes to complete everything…

 Delivering tested, working and valuable software regularly

 Increase trust between stakeholders and you

 Get feedback very quickly

 Learn and adapt fast

 If we can release at any time, that'll eliminate all the stress.

3

Releasing frequently Setting aggressive deadlines

 We need to recognize a Minimum Marketable Feature (MMF)

 MMFs may provide value in many ways
 Competitive differentiation

 Revenue generation

 Cost savings

 Group MMFs into different releases
 Team brainstorming exercise

 Challenge : how to make small releases ?

4

 Build a plan that allows you to release at any time.
 Not to actually release all the time enable you to release at any time.

 What benefit do we have by doing this ?
 An important and new opportunity comes immediately change

directions to take advantage of the opportunity.

 There is some sort disaster (ex. project's surprise cancellation) We can
release what we have.

 Financial issue : At any time, you should be able to release a product
that has value proportional to the investment you've made.

 Technique : build the plan so that each task stands alone.
 Use vertical stripes instead of horizontal stripes

 Ex. (get data, validate data, write data to DB) VS (process customer data,
process shipping address, process billing information)

5

 Our project plans can't be disrupted by the slightest provocation.

 The amount of slack depends on the randomness of problem.

 Introduce slack
 Schedule no work on the last half-day of your plan ?

 This gives us the slack, but it would be pretty wasteful…

 A better solution
 Schedule useful and important work that isn't time-critical.

 This kind of work can be set aside in case of an emergency.

 Ex. Paying down technical debt

6

 Programmers must continually improve their skills.
 Keep up with their constantly expanding field

 Learn things that enhance their work on the project

 Solution
 Set aside half a day for each programmer to conduct self-directed

research on a topic of his choice.

 During this time, no modification on the project code source.

 Recommendation
 A quick stand-up meeting to ask that people

share what they've done in informal peer

discussion. share knowledge

7

 One of the most difficult things programmers must do…

 They find that they consistently estimate too low.
 Magical approach : multiplying by three ?!

 It's not easy to predict how we spend our time
 Interrupted concentration and surprising emergency.

 Estimates are never accurate, but they are consistently inaccurate.

 Team or individual velocity
 The number of (function points or story points) that team can accomplish

at an iteration (day, week, etc.)

 Instable velocity at the beginning stabilized after several iterations.

8

 One thing is always true : customers and stakeholders are invariably
disappointed by the estimates.

 Comments of disappointment should be treated as straightforward
requests for information.

 "Why does that cost so much ? "

 List the issued you considered when coming up with the estimate.

 Your initial, gut-feel estimate is most likely correct.

 Only change your estimate if you learn something genuinely new.

 Never change it just because you feel pressured professionalism.

9

 After we finish planning the releases, work begins !

 So how do we deliver on our commitment ?

 Programmers volunteer to work tasks
 The may ask for pairing.

 Pairs break apart as they finish their task.

 Individuals pick up new tasks from the board and form new pairs…

 As work continues, we need to revise the plan to reflect the
changing situation.
 Keep track of original task estimates (for better estimate later)

 Small demonstration for new value added into the product

10

