
Part 3 : Planning and agile practice

Tianxiao LIU - Master IISC 1 – University of Cergy-Pontoise

▪ Group the most valuable features together and release them first
▪ To achieve startling improvements in value

2

Month 1 2 3 4 5 6 7

Release 1

Release 1
Release 2

$$$$$

$$$ $$$ $$$

$$

$$$

▪ Releases are painful, aren't they ?
▪ Flag days on the schedule

▪ Repository freezes

▪ Rushes to complete everything…

▪ Delivering tested, working and valuable software regularly

→ Increase trust between stakeholders and you

→ Get feedback very quickly

→ Learn and adapt fast

▪ If we can release at any time, that'll eliminate all the stress.

3

Releasing frequently Setting aggressive deadlines

▪ We need to recognize a Minimum Marketable Feature (MMF)

▪ MMFs may provide value in many ways
▪ Competitive differentiation

▪ Revenue generation

▪ Cost savings

▪ Group MMFs into different releases
▪ Team brainstorming exercise

▪ Challenge : how to make small releases ?

4

▪ Build a plan that allows you to release at any time.
▪ Not to actually release all the time → enable you to release at any time.

▪ What benefit do we have by doing this ?
▪ An important and new opportunity comes → immediately change

directions to take advantage of the opportunity.

▪ There is some sort disaster (ex. project's surprise cancellation) → We can
release what we have.

▪ Financial issue : At any time, you should be able to release a product
that has value proportional to the investment you've made.

▪ Technique : build the plan so that each task stands alone.
▪ Use vertical stripes instead of horizontal stripes

▪ Ex. (process customer data, process shipping address, process billing
information) VS (get data, validate data, write data to DB)

5

▪ Our project plans can't be disrupted by the slightest provocation.

▪ The amount of slack depends on the randomness of problem.

▪ Introduce slack
▪ Schedule no work on the last half-day of your plan ?

→ This gives us the slack, but it would be pretty wasteful…

▪ A better solution
▪ Schedule useful and important work that isn't time-critical.

▪ This kind of work can be set aside in case of an emergency.

▪ Ex. Paying down technical debt

6

▪ Programmers must continually improve their skills.
▪ Keep up with their constantly expanding field

▪ Learn things that enhance their work on the project

▪ Solution
▪ Set aside half a day for each programmer to conduct self-directed

research on a topic of his choice.

▪ During this time, no modification on the project code source.

▪ Recommendation
▪ A quick stand-up meeting to ask that people

share what they've done in informal peer

discussion. → share knowledge

7

▪ One of the most difficult things programmers must do…

▪ They find that they consistently estimate too low.
▪ Magical approach : multiplying by three ?!

▪ It's not easy to predict how we spend our time
▪ Interrupted concentration and surprising emergency.

▪ Estimates are never accurate, but they are consistently inaccurate.

▪ Team or individual velocity
▪ The number of (function points or story points) that team can accomplish

at an iteration (day, week, etc.)

▪ Instable velocity at the beginning → stabilized after several iterations.

8

▪ One thing is always true : customers and stakeholders are invariably
disappointed by the estimates.

▪ Comments of disappointment should be treated as straightforward
requests for information.

▪ "Why does that cost so much ? "

▪ List the issued you considered when coming up with the estimate.

▪ Your initial, gut-feel estimate is most likely correct.

▪ Only change your estimate if you learn something genuinely new.

▪ Never change it just because you feel pressured → professionalism

9

▪ After we finish planning the releases, work begins !

▪ So how do we deliver on our commitment ?

▪ Programmers volunteer to work tasks
▪ The may ask for pairing.

▪ Pairs break apart as they finish their task.

▪ Individuals pick up new tasks from the board and form new pairs…

▪ As work continues, we need to revise the plan to reflect the
changing situation.
▪ Keep track of original task estimates (for better estimate later)

▪ Small demonstration for new value added into the product

10

▪ Values are abstracts, but also identifiable and distinct

▪ Courage
▪ To make the right decisions, even when they are difficult

▪ Communication
▪ To give the right people the right information : maximum use

▪ Simplicity
▪ To discard the things we want but don’t actually need

▪ Feedback
▪ To learn the appropriate lessons et every possible opportunity

▪ Respect
▪ To treat ourselves and others with dignity

▪ To acknowledge expertise and our mutual desire for success

11

▪ Improve your process by understanding how it affects your project

▪ Take advantage of feedbacks
▪ From everybody and everything : program, team, customers,

supervisors…

▪ What works well and what doesn’t

▪ Pay attention to what’s happening around you

▪ Ask very often : why are we doing this practice ?

▪ A complaint is interesting if it is based on an element of truth

12

▪ When you see the need of a change, modify your process.

▪ Your project team is unique !
▪ For every team, the needs are different.

▪ How to tune : in an agile way too
▪ Experiment it carefully : make small, isolated changes that allow you to

understand the results.

▪ Be specific about your expectations and about the measurements for
judging success.

▪ Use the results of your experiments to make further changes and iterate
until you are satisfied with the results

▪ Please have the courage to experiment and occasionally fail.

13

▪ Rules are important because they exist for a reason.

▪ However, rules can not anticipate all possible situations…

▪ Establish rules for your team
▪ Find the reason for each rule

▪ Exercise pragmatic idealism : establish an underlying set of ideals based
on practical results.

▪ Be prepared to explain your experiment
▪ It’s easier to be understood when you are breaking rules and you can

demonstrate that your are trustworthy and effective

14

▪ You are not working alone
▪ You need deal with other person during the process

▪ A grudging detente* is not enough !

▪ You need to form solid working relationships : honesty, trust, cooperation,
openness and mutual respect

▪ Forcing does not work
▪ Have people sit together and collaborate in pursuit of common goals

▪ Blame-oriented cultures sabotage relationships
▪ Credit and being right are not important.

▪ Treating others with respect and cooperating to produce great results is
important.

* FR : Détente à à contrecœur

15

▪ One team member X has an abrupt communication style
▪ This leads to friction with people who don’t know him well

▪ X is being rude ??

▪ The truth
▪ X is just not a native language speaker and is laconic by nature !

▪ Lesson
▪ It’s always easy to assume the worst about someone’s motivation when

you can’t talk face-to-face

▪ Solution : meet this person as often as possible
▪ You will find that nothing is personal, but rather an artifact to his culture.

16

▪ We need to diverse range of expertise.

▪ Within the project team, anyone can be a leader
▪ Encourage team members to turn to the person or persons most qualified to

make a necessary decision

▪ Leadership means ?
▪ “I’m the most senior, so we will do it in my way !” → NO

▪ Don’t act as if you have authority over them if you are not the most qualified
to make a decision.

▪ Real managers
▪ They manage but they don’t do all by themselves.

▪ Let team members tell you what they need you to do to help them succeed

17

▪ Work in small reversible steps

▪ Reduce the amount of work you may have to throw away
▪ Breaking your work down into its smallest possible units and verify them

separately

▪ Do not solve multiple problems together

▪ Make incremental change → better approach

▪ Maximize work not done : “don’t eat too much at one time”
▪ “Simplicity is the art of maximizing the work not done.”

▪ Resist to solve big, hairy problems

▪ For eliminating waste and make your process more agile : do less at each
step

18

▪ What is the intellectual basis of a system design ?

▪ What does it mean to have a good design ?
▪ Problem : many discussions of good design focus on specific techniques

▪ Good is not obvious.

▪ Quality without a name (QWAN)
▪ An ineffable sense of rightness in the design

▪ This is too vague !

▪ Design for understanding
▪ Example : design an airplane : trade off safety, flue efficiency, passenger

capacity and production cost.

▪ A good system design minimizing the time required to create, modify and
maintain the system while achieving acceptable runtime performance

19

