
1!

8.1!

Object-Oriented Databases!

■  Need for Complex Data Types!
■  The Object-Oriented Data Model!
■  Object-Oriented Languages!
■  Persistent Programming Languages!
■  Persistent C++ Systems!

8.2!

Need for Complex Data Types!

■  Traditional database applications in data processing had
conceptually simple data types!
é Relatively few data types, first normal form holds!

■  Complex data types have grown more important in recent years!
é E.g. Addresses can be viewed as a !

Ø  Single string, or!
Ø  Separate attributes for each part, or!
Ø  Composite attributes (which are not in first normal form)!

é E.g. it is often convenient to store multivalued attributes as-is,
without creating a separate relation to store the values in first
normal form!

■  Applications!
é  computer-aided design, computer-aided software engineering!
é multimedia and image databases, and document/hypertext

databases.!

2!

8.3!

Object-Oriented Data Model!

■  Loosely speaking, an object corresponds to an entity in the E-
R model.!

■  The object-oriented paradigm is based on encapsulating code
and data related to an object into single unit.!

■  The object-oriented data model is a logical data model (like
the E-R model).!

■  Adaptation of the object-oriented programming paradigm (e.g.,
Smalltalk, C++) to database systems.!

8.4!

Object Structure!

■  An object has associated with it:!
é A set of variables that contain the data for the object. The value of

each variable is itself an object.!
é A set of messages to which the object responds; each message may

have zero, one, or more parameters.!
é A set of methods, each of which is a body of code to implement a

message; a method returns a value as the response to the message!

■  The physical representation of data is visible only to the
implementor of the object!

■  Messages and responses provide the only external interface to an
object.!

■  The term message does not necessarily imply physical message
passing. Messages can be implemented as procedure
invocations.!

3!

8.5!

Messages and Methods!

■  Methods are programs written in general-purpose language
with the following features!
é  only variables in the object itself may be referenced directly !
é  data in other objects are referenced only by sending messages.!

■  Methods can be read-only or update methods!
é Read-only methods do not change the value of the object!

■  Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, one to read and
the other to update the attribute!
é  e.g., the attribute address is represented by a variable address

and two messages get-address and set-address.!
é For convenience, many object-oriented data models permit direct

access to variables of other objects.!

8.6!

Object Classes!

■  Similar objects are grouped into a class; each such object is
called an instance of its class!

■  All objects in a class have the same!
é Variables, with the same types !
é message interface!
é methods!
The may differ in the values assigned to variables!

■  Example: Group objects for people into a person class!
■  Classes are analogous to entity sets in the E-R model!

4!

8.7!

Class Definition Example!
!class employee { 

!/*Variables */ 
! !string name; 
" "string address; 
" "date start-date; 
" "int salary; 

 /* Messages */ 
! !int annual-salary(); 
! !string get-name(); 
! !string get-address(); 
! !int set-address(string new-address); 
" "int employment-length(); 

};!
■  Methods to read and set the other variables are also needed with

strict encapsulation!
■  Methods are defined separately!

é E.g. int employment-length() { return today() – start-date;} 
 int set-address(string new-address) { address = new-address;}!

8.8!

Inheritance!
■  E.g., class of bank customers is similar to class of bank

employees, although there are differences !
é  both share some variables and messages, e.g., name and address. !
é But there are variables and messages specific to each class e.g.,

salary for employees and credit-rating for customers.!
■  Every employee is a person; thus employee is a specialization of

person"
■  Similarly, customer is a specialization of person.!
■  Create classes person, employee and customer"

é  variables/messages applicable to all persons associated with class
person."

é  variables/messages specific to employees associated with class
employee; similarly for customer"

5!

8.9!

Inheritance (Cont.)!

■  Place classes into a specialization/IS-A hierarchy!
é  variables/messages belonging to class person are

inherited by class employee as well as customer"
■  Result is a class hierarchy!

Note analogy with ISA Hierarchy in the E-R model!

8.10!

Class Hierarchy Definition!
! !class person{

 string name;
 string address:
 };
 class customer isa person {
 int credit-rating;
 };
 class employee isa person {
 date start-date;
 int salary;
 };
 class officer isa employee {
 int office-number,
 int expense-account-number,
 };

.!.!.!

6!

8.11!

Class Hierarchy Example (Cont.)!
■  Full variable list for objects in the class officer:"

é  office-number, expense-account-number: defined locally!
é  start-date, salary: inherited from employee"
é  name, address: inherited from person!

■  Methods inherited similar to variables.!
■  Substitutability — any method of a class, say person, can be invoked

equally well with any object belonging to any subclass, such as
subclass officer of person."

■  Class extent: set of all objects in the class. Two options:!
1. !Class extent of employee includes all officer, teller and secretary objects.!
2.  Class extent of employee includes only employee objects that are not in a

subclass such as officer, teller, or secretary"
★  This is the usual choice in OO systems!
★  Can access extents of subclasses to find all objects of  

subtypes of employee!

8.12!

Example of Multiple Inheritance!

Class DAG for banking example.!

7!

8.13!

Multiple Inheritance!
■  With multiple inheritance a class may have more than one superclass.!

é  The class/subclass relationship is represented by a directed acyclic graph
(DAG) !

é  Particularly useful when objects can be classified in more than one way,
which are independent of each other !
Ø  E.g. temporary/permanent is independent of Officer/secretary/teller!
Ø  Create a subclass for each combination of subclasses !

–  Need not create subclasses for combinations that are not possible in
the database being modeled!

■  A class inherits variables and methods from all its superclasses!
■  There is potential for ambiguity when a variable/message N with the

same name is inherited from two superclasses A and B!
é  No problem if the variable/message is defined in a shared superclass!
é  Otherwise, do one of the following!

Ø  flag as an error,!
Ø  rename variables (A.N and B.N)!
Ø  choose one.!

8.14!

More Examples of Multiple Inheritance!

■  Conceptually, an object can belong to each of several
subclasses!
é A person can play the roles of student, a teacher or footballPlayer,

or any combination of the three!
Ø  E.g., student teaching assistant who also play football!

■  Can use multiple inheritance to model “roles” of an object!
é That is, allow an object to take on any one or more of a set of types!

■  But many systems insist an object should have a most-specific
class!
é That is, there must be one class that an object belongs to which is

a subclass of all other classes that the object belongs to!
é Create subclasses such as student-teacher and 

student-teacher-footballPlayer for each combination!
é When many combinations are possible, creating  

subclasses for each combination can become cumbersome!

8!

8.15!

Object Identity!

■  An object retains its identity even if some or all of the values
of variables or definitions of methods change over time.!

■  Object identity is a stronger notion of identity than in
programming languages or data models not based on object
orientation.!
é Value – data value; e.g. primary key value used in relational

systems.!
é Name – supplied by user; used for variables in procedures.!
é Built-in – identity built into data model or programming

language.!
Ø  no user-supplied identifier is required. !
Ø  Is the form of identity used in object-oriented systems.!

8.16!

Object Identifiers!

■  Object identifiers used to uniquely identify objects!
é Object identifiers are unique: !

Ø  no two objects have the same identifier!
Ø  each object has only one object identifier!

é E.g., the spouse field of a person object may be an identifier of
another person object.!

é  can be stored as a field of an object, to refer to another object.!
é Can be !

Ø  system generated (created by database) or !
Ø  external (such as social-security number)!

é System generated identifiers:!
Ø  Are easier to use, but cannot be used across database systems!
Ø  May be redundant if unique identifier already exists!

9!

8.17!

Object Containment!

■  Each component in a design may contain other components!
■  Can be modeled as containment of objects. Objects containing;

other objects are called composite objects.!
■  Multiple levels of containment create a containment hierarchy "

é  links interpreted as is-part-of, not is-a.!
■  Allows data to be viewed at different granularities by different

users.!

8.18!

Object-Oriented Languages!

■  Object-oriented concepts can be used in different ways!
é  Object-orientation can be used as a design tool, and be

encoded into, for example, a relational database !
★  analogous to modeling data with E-R diagram and then

converting to a set of relations) !
é  The concepts of object orientation can be incorporated into a

programming language that is used to manipulate the
database.!
Ø  Object-relational systems – add complex types and

object-orientation to relational language.!
Ø  Persistent programming languages – extend object-

oriented programming language to deal with databases
by adding concepts such as persistence and collections. !

10!

8.19!

Persistent Programming Languages!

■  Persistent Programming languages allow objects to be created
and stored in a database, and used directly from a programming
language!
é  allow data to be manipulated directly from the programming language !

Ø  No need to go through SQL.!
é No need for explicit format (type) changes !

Ø  format changes are carried out transparently by system!
Ø  Without a persistent programming language, format changes

becomes a burden on the programmer!
–  More code to be written!
–  More chance of bugs!

é  allow objects to be manipulated in-memory !
Ø  no need to explicitly load from or store to the database!

–  Saved code, and saved overhead of loading/storing large
amounts of data!

8.20!

Persistent Prog. Languages (Cont.)!

■  Drawbacks of persistent programming languages!
é Due to power of most programming languages, it is easy to make

programming errors that damage the database.!
é Complexity of languages makes automatic high-level optimization

more difficult.!
é Do not support declarative querying as well as relational databases!

11!

8.21!

Persistence of Objects!

■  Approaches to make transient objects persistent include
establishing !
é Persistence by Class – declare all objects of a class to be

persistent; simple but inflexible.!
é Persistence by Creation – extend the syntax for creating objects to

specify that that an object is persistent.!
é Persistence by Marking – an object that is to persist beyond

program execution is marked as persistent before program
termination.!

é Persistence by Reachability - declare (root) persistent objects;
objects are persistent if they are referred to (directly or indirectly)
from a root object. !
Ø  Easier for programmer, but more overhead for database system!
Ø  Similar to garbage collection used e.g. in Java, which  

also performs reachability tests!

8.22!

Object Identity and Pointers!

■  A persistent object is assigned a persistent object identifier.!
■  Degrees of permanence of identity:!

é  Intraprocedure – identity persists only during the executions of a
single procedure!

é  Intraprogram – identity persists only during execution of a single
program or query.!

é  Interprogram – identity persists from one program execution to
another, but may change if the storage organization is changed!

é Persistent – identity persists throughout program executions and
structural reorganizations of data; required for object-oriented
systems.!

12!

8.23!

Object Identity and Pointers (Cont.)!

■  In O-O languages such as C++, an object identifier is
actually an in-memory pointer.!

■  Persistent pointer – persists beyond program execution!
é  can be thought of as a pointer into the database!

Ø  E.g. specify file identifier and offset into the file!
é Problems due to database reorganization have to be dealt

with by keeping forwarding pointers!

8.24!

Storage and Access of Persistent Objects!

■  Name objects (as you would name files) !
é Cannot scale to large number of objects.!
é Typically given only to class extents and other collections of

objects, but not objects.!
■  Expose object identifiers or persistent pointers to the objects!

é Can be stored externally.!
é All objects have object identifiers.!

■  Store collections of objects, and allow programs to iterate
over the collections to find required objects!
é Model collections of objects as collection types!
é Class extent - the collection of all objects belonging to the

class; usually maintained for all classes that can have persistent
objects.!

How to find objects in the database:!

13!

8.25!

Persistent C++ Systems!

■  C++ language allows support for persistence to be added without
changing the language!
é Declare a class called Persistent_Object with attributes and methods

to support persistence!
é Overloading – ability to redefine standard function names and

operators (i.e., +, –, the pointer deference operator –>) when applied
to new types!

é Template classes help to build a type-safe type system supporting
collections and persistent types.!

■  Providing persistence without extending the C++ language is !
é  relatively easy to implement!
é  but more difficult to use!

■  Persistent C++ systems that add features to the C++ language
have been built, as also systems that avoid changing the  
language!

8.26!

ODMG C++ Object Definition Language!

■  The Object Database Management Group is an industry
consortium aimed at standardizing object-oriented databases!
é  in particular persistent programming languages!
é  Includes standards for C++, Smalltalk and Java!
é ODMG-93!
é ODMG-2.0 and 3.0 (which is 2.0 plus extensions to Java)!

Ø  Our description based on ODMG-2.0!
■  ODMG C++ standard avoids changes to the C++ language!

é  provides functionality via template classes and class libraries!

14!

8.27!

ODMG Types!

■  Template class d_Ref<class> used to specify references
(persistent pointers)!

■  Template class d_Set<class> used to define sets of objects. !!
é Methods include insert_element(e) and delete_element(e) "

■  Other collection classes such as d_Bag (set with duplicates
allowed), d_List and d_Varray (variable length array) also
provided.!

■  d_ version of many standard types provided, e.g. d_Long and
d_string!
é  Interpretation of these types is platform independent!
é Dynamically allocated data (e.g. for d_string) allocated in the

database, not in main memory!

8.28!

ODMG C++ ODL: Example!

 class Branch : public d_Object {
 ….

 }
 class Person : public d_Object {
 public:

 d_String name; // should not use String!
 d_String address;
};

!class Account : public d_Object {
 private:

 d_Long balance;
 public:

 d_Long number;
 d_Set <d_Ref<Customer>> owners;

 int find_balance();
 int update_balance(int delta);

};

15!

8.29!

ODMG C++ ODL: Example (Cont.)!

class Customer : public Person {
public:
 d_Date member_from;
 d_Long customer_id;
 d_Ref<Branch> home_branch;
 d_Set <d_Ref<Account>> accounts; };

8.30!

Implementing Relationships!

■  Relationships between classes implemented by references!
■  Special reference types enforces integrity by adding/removing

inverse links.!
é Type d_Rel_Ref<Class, InvRef> is a reference to Class, where

attribute InvRef of Class is the inverse reference.!
é Similarly, d_Rel_Set<Class, InvRef> is used for a set of references!

■  Assignment method (=) of class d_Rel_Ref is overloaded!
é Uses type definition to automatically find and update the inverse

link!
é Frees programmer from task of updating inverse links!
é Eliminates possibility of inconsistent links!

■  Similarly, insert_element() and delete_element() methods of
d_Rel_Set use type definition to find and update the inverse link
automatically!

!

16!

8.31!

Implementing Relationships!

■  E.g.!
!extern const char _owners[], _accounts[];
class Account : public d.Object {
 ….

 d_Rel_Set <Customer, _accounts> owners;
}
 // .. Since strings can’t be used in templates …
const char _owners= “owners”;
const char _accounts= “accounts”;

8.32!

ODMG C++ Object Manipulation Language!
■  Uses persistent versions of C++ operators such as new(db)

!!

 d_Ref<Account> account = new(bank_db, “Account”) Account;
é  new allocates the object in the specified database, rather than in

memory.!
é The second argument (“Account”) gives typename used in the

database.!
■  Dereference operator -> when applied on a d_Ref<Account>

reference loads the referenced object in memory (if not already
present) before continuing with usual C++ dereference.!

■  Constructor for a class – a special method to initialize objects
when they are created; called automatically on new call.!

■  Class extents maintained automatically on object creation and
deletion!
é Only for classes for which this feature has been specified !

Ø  Specification via user interface, not C++!
é Automatic maintenance of class extents not supported in  

earlier versions of ODMG!

17!

8.33!

ODMG C++OML: Database and Object
Functions!

■  Class d_Database provides methods to !
é  open a database: open(databasename) !
é  give names to objects: set_object_name(object, name)!
é  look up objects by name: lookup_object(name)!
é  rename objects: rename_object(oldname, newname)!
é  close a database (close());!

■  Class d_Object is inherited by all persistent classes.!
é  provides methods to allocate and delete objects!
é method mark_modified() must be called before an object is

updated. !
Ø  Is automatically called when object is created!

8.34!

ODMG C++ OML: Example!

int create_account_owner(String name, String Address){

 Database bank_db.obj;
Database * bank_db= & bank_db.obj;
bank_db =>open(“Bank-DB”);
d.Transaction Trans;
Trans.begin();

d_Ref<Account> account = new(bank_db) Account;
d_Ref<Customer> cust = new(bank_db) Customer;
cust->name - name;
cust->address = address;
cust->accounts.insert_element(account);
... Code to initialize other fields

Trans.commit();

}

18!

8.35!

ODMG C++ OML: Example (Cont.)!

■  Class extents maintained automatically in the database.!
■  To access a class extent: 

 d_Extent<Customer> customerExtent(bank_db);!
■  Class d_Extent provides method

 d_Iterator<T> create_iterator()  
to create an iterator on the class extent !

■  Also provides select(pred) method to return iterator on objects that
satisfy selection predicate pred.!

■  Iterators help step through objects in a collection or class extent.!
■  Collections (sets, lists etc.) also provide create_iterator() method.!

8.36!

ODMG C++ OML: Example of Iterators!

int print_customers() {
Database bank_db_obj;
Database * bank_db = &bank_db_obj;
bank_db->open (“Bank-DB”);
d_Transaction Trans; Trans.begin ();

d_Extent<Customer> all_customers(bank_db);
d_Iterator<d_Ref<Customer>> iter;
iter = all_customers–>create_iterator();
d_Ref <Customer> p;

 while{iter.next (p))
 print_cust (p); // Function assumed to be defined elsewhere

 Trans.commit();

}

19!

8.37!

ODMG C++ Binding: Other Features!
■  Declarative query language OQL, looks like SQL !

é Form query as a string, and execute it to get a set of results
(actually a bag, since duplicates may be present) !

!d_Set<d_Ref<Account>> result;
d_OQL_Query q1("select a

 from Customer c, c.accounts a
 where c.name=‘Jones’

 and a.find_balance() > 100");
d_oql_execute(q1, result);

■  Provides error handling mechanism based on C++ exceptions,
through class d_Error

■  Provides API for accessing the schema of a database.!

8.38!

Making Pointer Persistence Transparent!

■  Drawback of the ODMG C++ approach:!
é Two types of pointers!
é Programmer has to ensure mark_modified() is called, else

database can become corrupted!
■  ObjectStore approach!

é Uses exactly the same pointer type for in-memory and database
objects!

é Persistence is transparent applications !
Ø  Except when creating objects!

é Same functions can be used on in-memory and persistent objects
since pointer types are the same!

é  Implemented by a technique called pointer-swizzling which is
described in Chapter 11.!

é No need to call mark_modified(), modification detected
automatically.!

20!

8.39!

Persistent Java Systems!

■  ODMG-3.0 defines extensions to Java for persistence!
é  Java does not support templates, so language extensions are

required!
■  Model for persistence: persistence by reachability!

é Matches Java’s garbage collection model!
é Garbage collection needed on the database also!
é Only one pointer type for transient and persistent pointers!

■  Class is made persistence capable by running a post-processor
on object code generated by the Java compiler!
é Contrast with pre-processor used in C++!
é Post-processor adds mark_modified() automatically!

■  Defines collection types DSet, DBag, DList, etc.!
■  Uses Java iterators, no need for new iterator class!

8.40!

ODMG Java!

■  Transaction must start accessing database from one of the root
object (looked up by name)!
é  finds other objects by following pointers from the root objects!

■  Objects referred to from a fetched object are allocated space in
memory, but not necessarily fetched!
é Fetching can be done lazily!
é An object with space allocated but not yet fetched is called a hollow

object!
é When a hollow object is accessed, its data is fetched from disk.!

21!

8.41!

Object-Relational Databases!

■  Nested Relations!
■  Complex Types and Object Orientation!
■  Querying with Complex Types!
■  Creation of Complex Values and Objects!
■  Comparison of Object-Oriented and Object-Relational

Databases!

8.42!

Object-Relational Data Models!

■  Extend the relational data model by including object orientation
and constructs to deal with added data types.!

■  Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.!

■  Preserve relational foundations, in particular the declarative
access to data, while extending modeling power.!

■  Upward compatibility with existing relational languages.!

22!

8.43!

Nested Relations!

■  Motivation:!
é Permit non-atomic domains (atomic ≡ indivisible)!
é Example of non-atomic domain: set of integers,or set of

tuples!
é Allows more intuitive modeling for applications with

complex data!
■  Intuitive definition:!

é  allow relations whenever we allow atomic (scalar) values
— relations within relations!

é Retains mathematical foundation of relational model !
é Violates first normal form.!

8.44!

Example of a Nested Relation!

■  Example: library information system!
■  Each book has !

é  title, !
é  a set of authors,!
é Publisher, and!
é  a set of keywords!

■  Non-1NF relation books!

23!

8.45!

1NF Version of Nested Relation!

■  1NF version of books!

flat-books!

8.46!

4NF Decomposition of Nested Relation!

■  Remove awkwardness of flat-books by assuming that the
following multivalued dependencies hold:!
é  title author"
é  title keyword"
é  title pub-name, pub-branch"

■  Decompose flat-doc into 4NF using the schemas:!
é  (title, author)"
é  (title, keyword)"
é  (title, pub-name, pub-branch)"

24!

8.47!

4NF Decomposition of flat–books!

8.48!

Problems with 4NF Schema!

■  4NF design requires users to include joins in their queries.!
■  1NF relational view flat-books defined by join of 4NF relations:!

é  eliminates the need for users to perform joins,!
é  but loses the one-to-one correspondence between tuples and

documents.!
é And has a large amount of redundancy!

■  Nested relations representation is much more natural here.!

25!

8.49!

Complex Types and SQL:1999!

■  Extensions to SQL to support complex types include:!
é Collection and large object types!

Ø  Nested relations are an example of collection types!
é Structured types!

Ø  Nested record structures like composite attributes !
é  Inheritance!
é Object orientation!

Ø  Including object identifiers and references!
■  Our description is mainly based on the SQL:1999 standard!

é Not fully implemented in any database system currently!
é But some features are present in each of the major commercial

database systems!
Ø  Read the manual of your database system to see what it

supports!
é We present some features that are not in SQL:1999!

Ø  These are noted explicitly!

8.50!

Collection Types!
■  Set type (not in SQL:1999)!

 create table books (
 …..
 keyword-set setof(varchar(20))
 ……

)

■  Sets are an instance of collection types. Other instances include
é Arrays (are supported in SQL:1999)

Ø  E.g. author-array varchar(20) array[10]
Ø  Can access elements of array in usual fashion:

–  E.g. author-array[1]
é Multisets (not supported in SQL:1999)

Ø  I.e., unordered collections, where an element may occur multiple
times

é Nested relations are sets of tuples
Ø  SQL:1999 supports arrays of tuples

26!

8.51!

Large Object Types!

■  Large object types
é clob: Character large objects

 book-review clob(10KB)

é blob: binary large objects

 image blob(10MB)

 movie blob (2GB)

■  JDBC/ODBC provide special methods to access large objects in
small pieces
é  Similar to accessing operating system files

é Application retrieves a locator for the large object and then
manipulates the large object from the host language

8.52!

Structured and Collection Types!

■  Structured types can be declared and used in SQL!
 ! create type Publisher as 

! (name varchar(20), 
! branch varchar(20)) 

 create type Book as  
! (title varchar(20), 
! author-array varchar(20) array [10], 
! pub-date date, 
! publisher Publisher, 
! keyword-set setof(varchar(20))) 

!
é  Note: setof declaration of keyword-set is not supported by SQL:1999!
é  Using an array to store authors lets us record the order of the authors!

■  Structured types can be used to create tables!
 create table books of Book"

é  Similar to the nested relation books, but with array of authors  
instead of set!

27!

8.53!

Structured and Collection Types (Cont.)!

■  Structured types allow composite attributes of E-R diagrams
to be represented directly.!

■  Unnamed row types can also be used in SQL:1999 to define
composite attributes
é E.g. we can omit the declaration of type Publisher and instead

use the following in declaring the type Book
 publisher row (name varchar(20),

 branch varchar(20))!
■  Similarly, collection types allow multivalued attributes of E-R

diagrams to be represented directly.!

8.54!

Structured Types (Cont.)!
■  We can create tables without creating an intermediate type

é  For example, the table books could also be defined as follows:
 create table books
 (title varchar(20),
 author-array varchar(20) array[10],
 pub-date date,
 publisher Publisher
 keyword-list setof(varchar(20)))

■  Methods can be part of the type definition of a structured type:
 create type Employee as (
 name varchar(20),
 salary integer)
 method giveraise (percent integer)

■  We create the method body separately

 create method giveraise (percent integer) for Employee
 begin
 set self.salary = self.salary + (self.salary * percent) / 100;
 end

28!

8.55!

Creation of Values of Complex Types!
■  Values of structured types are created using constructor functions

é E.g. Publisher(‘McGraw-Hill’, ‘New York’)
é Note: a value is not an object

■  SQL:1999 constructor functions
é E.g.

create function Publisher (n varchar(20), b varchar(20))
returns Publisher
begin
 set name=n;
 set branch=b;

end
é Every structured type has a default constructor with no arguments,

others can be defined as required
■  Values of row type can be constructed by listing values in parantheses

é  E.g. given row type row (name varchar(20),
 branch varchar(20))!

é We can assign (`McGraw-Hill’,`New York’) as a value of above type

8.56!

Creation of Values of Complex Types!
■  Array construction
 array [‘Silberschatz’,`Korth’,`Sudarshan’]
■  Set value attributes (not supported in SQL:1999)

é set(v1, v2, …, vn)
■  To create a tuple of the books relation

 (‘Compilers’, array[`Smith’,`Jones’],
 Publisher(`McGraw-Hill’,`New York’),

 set(`parsing’,`analysis’))
■  To insert the preceding tuple into the relation books
 insert into books

values
 (`Compilers’, array[`Smith’,`Jones’],
 Publisher(‘McGraw Hill’,`New York’),
 set(`parsing’,`analysis’))

29!

8.57!

Inheritance!
■  Suppose that we have the following type definition for people:!

 create type Person
 (name varchar(20),

 address varchar(20))

■  Using inheritance to define the student and teacher types
 create type Student
 under Person
 (degree varchar(20),
 department varchar(20))
 create type Teacher
 under Person
 (salary integer,
 department varchar(20))

■  Subtypes can redefine methods by using overriding method in place
of method in the method declaration

8.58!

Multiple Inheritance!

■  SQL:1999 does not support multiple inheritance

■  If our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:

 create type Teaching Assistant
 under Student, Teacher

■  To avoid a conflict between the two occurrences of department
we can rename them

 create type Teaching Assistant
 under
 Student with (department as student-dept),
 Teacher with (department as teacher-dept)

30!

8.59!

Table Inheritance!

■  Table inheritance allows an object to have multiple types by
allowing an entity to exist in more than one table at once.!

■  E.g. people table: create table people of Person

■  We can then define the students and teachers tables as
subtables of people!
! !create table students of Student
 under people

 create table teachers of Teacher
 under people

■  Each tuple in a subtable (e.g. students and teachers) is implicitly
present in its supertables (e.g. people)"

■  Multiple inheritance is possible with tables, just as it is possible with
types.
 create table teaching-assistants of Teaching Assistant
 under students, teachers
é  Multiple inheritance not supported in SQL:1999

8.60!

Table Inheritance: Roles!

■  Table inheritance is useful for modeling roles!
■  permits a value to have multiple types, without having a  

most-specific type (unlike type inheritance).!
é  e.g., an object can be in the students and teachers subtables

simultaneously, without having to be in a subtable student-teachers
that is under both students and teachers"

é  object can gain/lose roles: corresponds to inserting/deleting object
from a subtable!

■  NOTE: SQL:1999 requires values to have a most specific type!
é  so above discussion is not applicable to SQL:1999!

31!

8.61!

Table Inheritance: Consistency Requirements !

■  Consistency requirements on subtables and supertables.!
é  Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and teachers)"
é  Additional constraint in SQL:1999:!
!All tuples corresponding to each other (that is, with the same values
for inherited attributes) must be derived from one tuple (inserted into
one table). !
Ø  That is, each entity must have a most specific type!
Ø  We cannot have a tuple in people corresponding to a tuple each

in students and teachers "
!

8.62!

Table Inheritance: Storage Alternatives!

■  Storage alternatives!
1.  Store only local attributes and the primary key of the supertable in

subtable!
Ø  Inherited attributes derived by means of a join with the

supertable!
2.  Each table stores all inherited and locally defined attributes!

Ø  Supertables implicitly contain (inherited attributes of) all tuples in
their subtables!

Ø  Access to all attributes of a tuple is faster: no join required!
Ø  If entities must have most specific type, tuple is stored only in

one table, where it was created!
★ Otherwise, there could be redundancy!

32!

8.63!

Reference Types!

■  Object-oriented languages provide the ability to create and refer to
objects. !

■  In SQL:1999!
é References are to tuples, and!
é References must be scoped, !

Ø  I.e., can only point to tuples in one specified table!
■  We will study how to define references first, and later see how to use

references!

8.64!

Reference Declaration in SQL:1999!

■  E.g. define a type Department with a field name and a field head
which is a reference to the type Person, with table people as
scope!

 !create type Department( 
! name varchar(20), 
! head ref(Person) scope people)!

■  We can then create a table departments as follows!
 create table departments of Department"
■  We can omit the declaration scope people from the type

declaration and instead make an addition to the create table
statement: 

!create table departments of Department 
! (head with options scope people)!

33!

8.65!

Initializing Reference Typed Values!

■  In Oracle, to create a tuple with a reference value, we can first
create the tuple with a null reference and then set the reference
separately by using the function ref(p) applied to a tuple variable!

■  E.g. to create a department with name CS and head being the
person named John, we use!
!insert into departments"
! values (`CS’, null)!
!update departments"
! set head = (select ref(p)!
! ! from people as p"
! ! ! where name=`John’)!
! where name = `CS’!

8.66!

Initializing Reference Typed Values (Cont.)!

■  SQL:1999 does not support the ref() function, and instead
requires a special attribute to be declared to store the object
identifier !

■  The self-referential attribute is declared by adding a ref is clause
to the create table statement:!!
! create table people of Person  
 ref is oid system generated!
é Here, oid is an attribute name, not a keyword. !

■  To get the reference to a tuple, the subquery shown earlier
would use!
! select p.oid"

 instead of select ref(p)"

34!

8.67!

User Generated Identifiers!

■  SQL:1999 allows object identifiers to be user-generated!
é The type of the object-identifier must be specified as part of the type

definition of the referenced table, and!
é The table definition must specify that the reference is user generated!
é E.g. !

! create type Person  
 (name varchar(20) 
 address varchar(20)) 
 ref using varchar(20) 
 create table people of Person  
 ref is oid user generated!

■  When creating a tuple, we must provide a unique value for the
identifier (assumed to be the first attribute):!
 insert into people values  

 (‘01284567’, ‘John’, `23 Coyote Run’)!
!!

8.68!

User Generated Identifiers (Cont.)!
■  We can then use the identifier value when inserting a tuple into

departments"
é Avoids need for a separate query to retrieve the identifier:!

! E.g. insert into departments 
 values(`CS’, `02184567’)!

■  It is even possible to use an existing primary key value as the
identifier, by including the ref from clause, and declaring the
reference to be derived !
!create type Person  
 (name varchar(20) primary key, 
 address varchar(20)) 
 ref from(name) 
create table people of Person  
 ref is oid derived!

■  When inserting a tuple for departments, we can then use!
!insert into departments 
 values(`CS’,`John’)!

35!

8.69!

Path Expressions!

■  Find the names and addresses of the heads of all departments:!
! !select head –>name, head –>address 

!from departments"
■  An expression such as “head–>name” is called a path

expression!
■  Path expressions help avoid explicit joins!

é  If department head were not a reference, a join of departments with
people would be required to get at the address!

é Makes expressing the query much easier for the user!

8.70!

Querying with Structured Types!

■  Find the title and the name of the publisher of each book. !
! !select title, publisher.name  

"from books"
 Note the use of the dot notation to access fields of the composite

attribute (structured type) publisher"

36!

8.71!

Collection-Value Attributes!
■  Collection-valued attributes can be treated much like relations, using

the keyword unnest!
é The books relation has array-valued attribute author-array and set-

valued attribute keyword-set!
■  To find all books that have the word “database” as one of their

keywords, ! ! 
 select title 

"from books 
"where ‘database’ in (unnest(keyword-set))!

é Note: Above syntax is valid in SQL:1999, but the only collection type
supported by SQL:1999 is the array type !

■  To get a relation containing pairs of the form “title, author-name” for
each book and each author of the book!

 select B.title, A 
" from books as B, unnest (B.author-array) as A!

! !!

8.72!

Collection Valued Attributes (Cont.)!

■  We can access individual elements of an array by using indices!
é E.g. If we know that a particular book has three authors, we could

write:!
! !select author-array[1], author-array[2], author-array[3] 

!from books 
"where title = `Database System Concepts’!

37!

8.73!

Unnesting!

■  The transformation of a nested relation into a form with fewer (or no)
relation-valued attributes us called unnesting.!

■  E.g.!
 select title, A as author, publisher.name as pub_name,  

 publisher.branch as pub_branch, K as keyword"
 from books as B, unnest(B.author-array) as A, unnest (B.keyword-

list) as K"

8.74!

Nesting !

■  Nesting is the opposite of unnesting, creating a collection-valued attribute!
■  NOTE: SQL:1999 does not support nesting!
■  Nesting can be done in a manner similar to aggregation, but using the

function set() in place of an aggregation operation, to create a set!
■  To nest the flat-books relation on the attribute keyword:!
!select title, author, Publisher(pub_name, pub_branch) as publisher,  
 set(keyword) as keyword-list 
from flat-books 
groupby title, author, publisher"

■  To nest on both authors and keywords:!
 select title, set(author) as author-list,  

 Publisher(pub_name, pub_branch) as publisher, 
 set(keyword) as keyword-list 
from flat-books 
groupby title, publisher"

38!

8.75!

Nesting (Cont.)!

■  Another approach to creating nested relations is to use
subqueries in the select clause. !
!select title, 

! (select author 
! from flat-books as M  
! where M.title=O.title) as author-set, 
! Publisher(pub-name, pub-branch) as publisher, 
! (select keyword  
! from flat-books as N  
! where N.title = O.title) as keyword-set 

from flat-books as O"
■  Can use orderby clause in nested query to get an ordered

collection!
é Can thus create arrays, unlike earlier approach!

8.76!

Functions and Procedures!

■  SQL:1999 supports functions and procedures!
é Functions/procedures can be written in SQL itself, or in an external

programming language!
é Functions are particularly useful with specialized data types such as

images and geometric objects!
Ø  E.g. functions to check if polygons overlap, or to compare

images for similarity!
é Some databases support table-valued functions, which can return

a relation as a result!

■  SQL:1999 also supports a rich set of imperative constructs,
including!
é  Loops, if-then-else, assignment!

■  Many databases have proprietary procedural extensions to SQL
that differ from SQL:1999!

39!

8.77!

SQL Functions!

■  Define a function that, given a book title, returns the count of the
number of authors (on the 4NF schema with relations books4
and authors).!

 create function author-count(name varchar(20)) 
 returns integer  
 begin 
 declare a-count integer; 
 select count(author) into a-count 
 from authors 
 where authors.title=name  
 return a=count; 
 end!

■  Find the titles of all books that have more than one author.!
! !select name  

"from books4  
"where author-count(title)> 1"

8.78!

SQL Methods!

■  Methods can be viewed as functions associated with structured
types!
é They have an implicit first parameter called self which is set to the

structured-type value on which the method is invoked!
é The method code can refer to attributes of the structured-type value

using the self variable!
Ø  E.g. self.a!

40!

8.79!

SQL Functions and Procedures (cont.)!
■  The author-count function could instead be written as procedure:!
!create procedure author-count-proc (in title varchar(20),  
 out a-count integer) 
 begin 

! select count(author) into a-count 
 from authors 
 where authors.title = title  
 end!

■  Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.!
é  E.g. from an SQL procedure!

! !declare a-count integer; 
!call author-count-proc(`Database systems Concepts’, a-count);!

■  SQL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of  
arguments differ, or at least the types of the arguments differ!

8.80!

External Language Functions/Procedures!

■  SQL:1999 permits the use of functions and procedures
written in other languages such as C or C++ !

■  Declaring external language procedures and functions 
!
!create procedure author-count-proc(in title varchar(20), 
 out count integer) 
language C  
external name’ /usr/avi/bin/author-count-proc’ 
 
create function author-count(title varchar(20)) 
returns integer 
language C  
external name ‘/usr/avi/bin/author-count’!

!

41!

8.81!

External Language Routines (Cont.)!
■  Benefits of external language functions/procedures: !

é more efficient for many operations, and more expressive
power!

■  Drawbacks!
é Code to implement function may need to be loaded into

database system and executed in the database system’s
address space!
Ø  risk of accidental corruption of database structures!
Ø security risk, allowing users access to unauthorized data!

é There are alternatives, which give good security at the cost of
potentially worse performance!

é Direct execution in the database system’s space is used
when efficiency is more important than security!

8.82!

Security with External Language Routines!

■  To deal with security problems!
é Use sandbox techniques!

Ø  that is use a safe language like Java, which cannot be
used to access/damage other parts of the database code!

é Or, run external language functions/procedures in a separate
process, with no access to the database process’ memory!
Ø Parameters and results communicated via inter-process

communication!

■  Both have performance overheads!
■  Many database systems support both above

approaches as well as direct executing in database
system address space!

42!

8.83!

Procedural Constructs!

■  SQL:1999 supports a rich variety of procedural constructs

■  Compound statement
é is of the form begin … end,

é may contain multiple SQL statements between begin and end.

é Local variables can be declared within a compound statements

■  While and repeat statements
 declare n integer default 0;
 while n < 10 do

 set n = n+1
 end while

 repeat

 set n = n – 1
 until n = 0
 end repeat

8.84!

Procedural Constructs (Cont.)!

■  For loop
é Permits iteration over all results of a query
é E.g. find total of all balances at the Perryridge branch

 declare n integer default 0; 
 for r as  
 select balance from account 
 where branch-name = ‘Perryridge’ 
 do 
! set n = n + r.balance  

 end for!

43!

8.85!

Procedural Constructs (cont.)!
■  Conditional statements (if-then-else) 

E.g. To find sum of balances for each of three categories of accounts
(with balance <1000, >=1000 and <5000, >= 5000)!
! !if r.balance < 1000  

! then set l = l + r.balance  
"elseif r.balance < 5000  
! then set m = m + r.balance  
"else set h = h + r.balance  
"end if !

■  SQL:1999 also supports a case statement similar to C case statement!
■  Signaling of exception conditions, and declaring handlers for exceptions!
! !declare out_of_stock condition 

!declare exit handler for out_of_stock 
"begin 
!… 

 .. signal out-of-stock 
!end!

é  The handler here is exit -- causes enclosing begin..end to be exited!
é  Other actions possible on exception!

8.86!

Comparison of O-O and O-R Databases!

■  Summary of strengths of various database systems:!
■  Relational systems!

é  simple data types, powerful query languages, high protection.!
■  Persistent-programming-language-based OODBs!

é  complex data types, integration with programming language, high
performance.!

■  Object-relational systems!
é  complex data types, powerful query languages, high protection.!

■  Note: Many real systems blur these boundaries!
é E.g. persistent programming language built as a wrapper on a

relational database offers first two benefits, but may have poor
performance.!

44!

8.87!

Finding all employees of a manager!

■  Procedure to find all employees who work directly or indirectly for mgr "
■  Relation manager(empname, mgrname)specifies who directly works for whom!
■  Result is stored in empl(name)!
!create procedure findEmp(in mgr char(10)) 
begin 

!create temporary table newemp(name char(10)); 
!create temporary table temp(name char(10)); 
!insert into newemp -- store all direct employees of mgr in newemp  
" select empname  
" from manager 
" where mgrname = mgr 
"!

8.88!

Finding all employees of a manager(cont.)!
 repeat 

 insert into empl -- add all new employees found to empl  
"select name  
"from newemp;!

 insert into temp -- find all employees of people already found  
 (select manager.empname  
 from newemp, manager 
" where newemp.empname = manager.mgrname; 

) 
 except (-- but remove those who were found earlier 
 select empname  
 from empl  
);!

 ! delete from newemp; -- replace contents of newemp by contents of temp  
 insert into newemp  
 select *  
 from temp; 
 delete from temp;!
!until not exists(select* from newemp) -- stop when no new employees are found 
end repeat; 
end!

45!

8.89!

■  Slides adapted from!

Database System Concepts!
 Fourth Edition!
 Abraham Silberschatz!
 Henry F. Korth!
 S. Sudarshan!

