
Dimitris Kotzinos

Big Data and the Cloud

1

Part II

Dimitris Kotzinos

Big Data Storage on the Cloud

2

Hadoop

Dimitris Kotzinos

Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

3

NEXT

Dimitris Kotzinos

2002-2004: Lucene and Nutch

▶ Early 2000s: Doug Cutting develops
two open-source search projects:
▶ Lucene: Search indexer

▶ Used e.g., by Wikipedia
▶ Nutch: A spider/crawler

(with Mike Carafella)

▶ Nutch
▶ Goal: Web-scale, crawler-based search
▶ Written by a few part-time developers
▶ Distributed, 'by necessity'
▶ Demonstrated 100M web pages on 4 nodes, but true

'web scale' still very distant
4

Dimitris Kotzinos

2004-2006: GFS and MapReduce

▶ 2003/04: GFS, MapReduce papers published
▶ Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: "The

Google File System", SOSP 2003
▶ Jeffrey Dean and Sanjay Ghemawat: "MapReduce: Simplified

Data Processing on Large Clusters", OSDI 2004
▶ Directly addressed Nutch's scaling issues

▶ GFS & MapReduce added to Nutch
▶ Two part-time developers over two years (2004-2006)
▶ Crawler & indexer ported in two weeks
▶ Ran on 20 nodes at IA and UW
▶ Much easier to program and run, scales to several 100M web

pages, but still far from web scale

5

Dimitris Kotzinos

2006-2008: Yahoo

▶ 2006: Yahoo hires Cutting
▶ Provides engineers, clusters, users, ...
▶ Big boost for the project; Yahoo spends tens of M$
▶ Not without a price: Yahoo has a slightly different focus

(e.g., security) than the rest of the project; delays result

▶ Hadoop project split out of Nutch
▶ Finally hit web scale in early 2008

▶ Cutting is now at Cloudera
▶ Startup; started by three top engineers from Google,

Facebook, Yahoo, and a former executive from Oracle
▶ Has its own version of Hadoop; software remains free, but

company sells support and consulting services
▶ Was elected chairman of Apache Software Foundation

6

Dimitris Kotzinos

Who uses Hadoop?

▶ Hadoop is running search on some of the
Internet's largest sites:
▶ Amazon Web Services: Elastic MapReduce
▶ AOL: Variety of uses, e.g., behavioral analysis & targeting
▶ EBay: Search optimization (532-node cluster)
▶ Facebook: Reporting/analytics, machine learning (1100 m.)
▶ Fox Interactive Media: MySpace, Photobucket, Rotten T.
▶ Last.fm: Track statistics and charts
▶ IBM: Blue Cloud Computing Clusters
▶ LinkedIn: People You May Know (2x50 machines)
▶ Rackspace: Log processing
▶ Twitter: Store + process tweets, log files, other data
▶ Yahoo: >36,000 nodes; biggest cluster is 4,000 nodes

7

Chapter 16
of your
textbook

Dimitris Kotzinos

Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

8

NEXT

Dimitris Kotzinos

Simplified scenario

▶ In this section, I will demonstrate how to use
Hadoop in standalone mode
▶ Useful for development and debugging (NOT for production)
▶ Single node (e.g., your laptop computer)
▶ No jobtrackers or tasktrackers
▶ Data in local file system, not in HDFS

▶ This is how the Hadoop installation in your
virtual machine works

▶ Later: Fully-distributed mode
▶ Used when running Hadoop on actual clusters

9

Dimitris Kotzinos

Recap: MapReduce dataflow

10

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
pu

t d
at

a

Ou
tp

ut
 d

at
a

"The Shuffle"

Intermediate
(key,value) pairs

Dimitris Kotzinos

What do we need to write?
▶ A mapper

▶ Accepts (key,value) pairs from the input
▶ Produces intermediate (key,value) pairs, which are then

shuffled

▶ A reducer
▶ Accepts intermediate (key,value) pairs
▶ Produces final (key,value) pairs for the output

▶ A driver
▶ Specifies which inputs to use, where to put the outputs
▶ Chooses the mapper and the reducer to use

▶ Hadoop takes care of the rest!!
▶ Default behaviors can be customized by the driver

11

Dimitris Kotzinos

Hadoop data types

▶ Hadoop uses its own serialization
▶ Java serialization is known to be very inefficient

▶ Result: A set of special data types
▶ All implement the 'Writable' interface
▶ Most common types shown above; also has some more

specialized types (SortedMapWritable, ObjectWritable, ...)
▶ Caution: Behavior somewhat unusual

12

Name Description JDK equivalent
IntWritable 32-bit integers Integer
LongWritable 64-bit integers Long
DoubleWritable Floating-point numbers Double
Text Strings String

Dimitris Kotzinos

The Mapper

▶ Extends abstract 'Mapper' class
▶ Input/output types are specified as type parameters

▶ Implements a 'map' function
▶ Accepts (key,value) pair of the specified type
▶ Writes output pairs by calling 'write' method on context
▶ Mixing up the types will cause problems at runtime (!)

13

import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.io.*;

public class FooMapper extends Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable key, Text value, Context context) {
context.write(new Text("foo"), value);

}

}

Input format
(file offset, line)

Intermediate format
can be freely chosen

Dimitris Kotzinos

The Reducer

▶ Extends abstract 'Reducer' class
▶ Must specify types again (must be compatible with mapper!)

▶ Implements a 'reduce' function
▶ Values are passed in as an 'Iterable'
▶ Caution: These are NOT normal Java classes. Do not store

them in collections - content can change between iterations!

14

import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.io.*;

public class FooReducer extends Reducer<Text, Text, IntWritable, Text> {

public void reduce(Text key, Iterable<Text> values, Context context)
throws java.io.IOException, InterruptedException

{
for (Text value: values)
context.write(new IntWritable(4711), value);

}

}

Intermediate format
(same as mapper output) Output format

Note: We may get
multiple values for

the same key!

Dimitris Kotzinos

The Driver

15

import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FooDriver {
public static void main(String[] args) throws Exception {

Job job = new Job();
job.setJarByClass(FooDriver.class);

FileInputFormat.addInputPath(job, new Path("in"));
FileOutputFormat.setOutputPath(job, new Path("out"));

job.setMapperClass(FooMapper.class);
job.setReducerClass(FooReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
}

}

▶ Specifies how the job is to be executed
▶ Input and output directories; mapper & reducer classes

Mapper&Reducer are
in the same Jar as

FooDriver

Input and Output
paths

Format of the (key,value)
pairs output by the

reducer

Dimitris Kotzinos

Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

16

NEXT

Dimitris Kotzinos

Manual compilation

▶ Goal: Produce a JAR file that contains the classes for
mapper, reducer, and driver
▶ This can be submitted to the Job Tracker, or run directly through Hadoop

▶ Step #1: Put hadoop-core-1.0.3.jar into classpath:
export CLASSPATH=$CLASSPATH:/path/to/hadoop/hadoop-core-1.0.3.jar

▶ Step #2: Compile mapper, reducer, driver:
javac FooMapper.java FooReducer.java FooDriver.java

▶ Step #3: Package into a JAR file:
jar cvf Foo.jar *.class

▶ Alternative: "Export..."/"Java JAR file" in Eclipse
17

Dimitris Kotzinos

Compilation with Ant

▶ Apache Ant: A build tool for Java (~"make")
▶ Run "ant jar" to build the JAR automatically
▶ Run "ant clean" to clean up derived files (like make clean)

18

<project name="foo" default="jar" basedir="./">
<target name="init">
<mkdir dir="classes"/>

</target>

<target name="compile" depends="init">
<javac srcdir="src" destdir="classes" includes="*.java" debug="true"/>

</target>

<target name="jar" depends="compile">
<jar destfile="foo.jar">
<fileset dir="classes" includes="**/*.class"/>

</jar>
</target>

<target name="clean">
<delete dir="classes"/>
<delete file="foo.jar"/>

</target>
</project>

Directory where
source files

are kept

Clean up any
derived files

Makes the JAR
file

Dimitris Kotzinos

Standalone mode installation

▶ What is standalone mode?
▶ Installation on a single node
▶ No daemons running (no Task Tracker, Job Tracker)
▶ Hadoop runs as an 'ordinary' Java program
▶ Used for debugging

19

Dimitris Kotzinos

Running a job in standalone mode

▶ Step #1: Create & populate input directory
▶ Configured in the Driver via addInputPath()
▶ Put input file(s) into this directory (ok to have more than 1)
▶ Output directory must not exist yet

▶ Step #2: Run Hadoop
▶ As simple as this: hadoop jar <jarName> <driverClassName>
▶ Example: hadoop jar foo.jar upenn.nets212.FooDriver
▶ In verbose mode, Hadoop will print statistics while running

▶ Step #3: Collect output files

20

Dimitris Kotzinos

Recap: Writing simple jobs for Hadoop
▶ Write a mapper, reducer, driver

▶ Custom serialization → Must use special data types (Writable)
▶ Explicitly declare all three (key,value) types

▶ Package into a JAR file
▶ Must contain class files for mapper, reducer, driver
▶ Create manually (javac/jar) or automatically (ant)

▶ Running in standalone mode
▶ hadoop jar foo.jar FooDriver
▶ Input and output directories in local file system

21

Dimitris Kotzinos

Wait a second...

▶ Wasn't Hadoop supposed to be very scalable?
▶ Work on Petabytes of data, run on thousands of machines

▶ Some more puzzle pieces are needed
▶ Special file system that can a) hold huge amounts of data,

and b) feed them into MapReduce efficiently
→ Hadoop Distributed File System (HDFS)

▶ Framework for distributing map and reduce tasks across
many nodes, coordination, fault tolerance...

→ Fully distributed mode
▶ Mechanism for customizing dataflow for particular

applications (e.g., non-textual input format, special sort...)
→ Hadoop data flow

22

Dimitris Kotzinos

Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

23

NEXT

Dimitris Kotzinos

What is HDFS?

▶ HDFS is a distributed file system
▶ Makes some unique tradeoffs that are good for MapReduce

▶ What HDFS does well:
▶ Very large read-only or append-only files (individual files may

contain Gigabytes/Terabytes of data)
▶ Sequential access patterns

▶ What HDFS does not do well:
▶ Storing lots of small files
▶ Low-latency access
▶ Multiple writers
▶ Writing to arbitrary offsets in the file

24

Dimitris Kotzinos

HDFS versus NFS

▶ Single machine makes part
of its file system available to
other machines

▶ Sequential or random access
▶ PRO: Simplicity, generality,

transparency
▶ CON: Storage capacity and

throughput limited by single
server

25

n Single virtual file system
spread over many machines

n Optimized for sequential read
and local accesses

n PRO: High throughput, high
capacity

n "CON": Specialized for
particular types of
applications

Network File System (NFS) Hadoop Distributed File System (HDFS)

Dimitris Kotzinos

How data is stored in HDFS

▶ Files are stored as sets of (large) blocks
▶ Default block size: 64 MB (ext4 default is 4kB!)
▶ Blocks are replicated for durability and availability
▶ What are the advantages of this design?

▶ Namespace is managed by a single name node
▶ Actual data transfer is directly between client & data node
▶ Pros and cons of this decision?

26

foo.txt: 3,9,6
bar.data: 2,4

block #2 of
foo.txt?

9
Read block 9

9

9

9 93

3
3

2
2

24

4

4
6

6Name node

Data nodesClient

Dimitris Kotzinos

The Namenode

▶ State stored in two files: fsimage and edits
▶ fsimage: Snapshot of file system metadata
▶ edits: Changes since last snapshot

▶ Normal operation:
▶ When namenode starts, it reads fsimage and then applies all

the changes from edits sequentially
▶ Pros and cons of this design?

27

foo.txt: 3,9,6
bar.data: 2,4
blah.txt: 17,18,19,20
xyz.img: 8,5,1,11

Name node fsimage

Created abc.txt
Appended block 21 to blah.txt
Deleted foo.txt
Appended block 22 to blah.txt
Appended block 23 to xyz.img
...

edits

Dimitris Kotzinos

The Secondary Namenode

▶ What if the state of the namenode is lost?
▶ Data in the file system can no longer be read!

▶ Solution #1: Metadata backups
▶ Namenode can write its metadata to a local disk, and/or to

a remote NFS mount

▶ Solution #2: Secondary Namenode
▶ Purpose: Periodically merge the edit log with the fsimage

to prevent the log from growing too large
▶ Has a copy of the metadata, which can be used to

reconstruct the state of the namenode
▶ But: State lags behind somewhat, so data loss is likely if

the namenode fails

28

Dimitris Kotzinos

Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

29

NEXT

Dimitris Kotzinos

Accessing data in HDFS

▶ HDFS implements a separate namespace
▶ Files in HDFS are not visible in the normal file system
▶ Only the blocks and the block metadata are visible
▶ HDFS cannot be (easily) mounted

▶ Some FUSE drivers have been implemented for it
30

[ahae@carbon ~]$ ls -la /tmp/hadoop-ahae/dfs/data/current/
total 209588

drwxrwxr-x 2 ahae ahae 4096 2013-10-08 15:46 .
drwxrwxr-x 5 ahae ahae 4096 2013-10-08 15:39 ..
-rw-rw-r-- 1 ahae ahae 11568995 2013-10-08 15:44 blk_-3562426239750716067

-rw-rw-r-- 1 ahae ahae 90391 2013-10-08 15:44 blk_-3562426239750716067_1020.meta
-rw-rw-r-- 1 ahae ahae 4 2013-10-08 15:40 blk_5467088600876920840

-rw-rw-r-- 1 ahae ahae 11 2013-10-08 15:40 blk_5467088600876920840_1019.meta
-rw-rw-r-- 1 ahae ahae 67108864 2013-10-08 15:44 blk_7080460240917416109
-rw-rw-r-- 1 ahae ahae 524295 2013-10-08 15:44 blk_7080460240917416109_1020.meta

-rw-rw-r-- 1 ahae ahae 67108864 2013-10-08 15:44 blk_-8388309644856805769
-rw-rw-r-- 1 ahae ahae 524295 2013-10-08 15:44 blk_-8388309644856805769_1020.meta

-rw-rw-r-- 1 ahae ahae 67108864 2013-10-08 15:44 blk_-9220415087134372383
-rw-rw-r-- 1 ahae ahae 524295 2013-10-08 15:44 blk_-9220415087134372383_1020.meta
-rw-rw-r-- 1 ahae ahae 158 2013-10-08 15:40 VERSION

[ahae@carbon ~]$

Dimitris Kotzinos

Accessing data in HDFS

▶ File access is through the hadoop command
▶ Examples:

▶ hadoop fs -put [file] [hdfsPath] Stores a file in HDFS
▶ hadoop fs -ls [hdfsPath] List a directory
▶ hadoop fs -get [hdfsPath] [file] Retrieves a file from HDFS
▶ hadoop fs -rm [hdfsPath] Deletes a file in HDFS
▶ hadoop fs -mkdir [hdfsPath] Makes a directory in HDFS

31

[ahae@carbon ~]$ /usr/local/hadoop/bin/hadoop fs -ls /user/ahae
Found 4 items

-rw-r--r-- 1 ahae supergroup 1366 2013-10-08 15:46 /user/ahae/README.txt
-rw-r--r-- 1 ahae supergroup 0 2013-10-083 15:35 /user/ahae/input
-rw-r--r-- 1 ahae supergroup 0 2013-10-08 15:39 /user/ahae/input2

-rw-r--r-- 1 ahae supergroup 212895587 2013-10-08 15:44 /user/ahae/input3
[ahae@carbon ~]$

Dimitris Kotzinos

Alternatives to the command line

▶ Getting data in and out of HDFS through the
command-line interface is a bit cumbersome

▶ Alternatives have been developed:
▶ FUSE file system: Allows HDFS to be mounted under Unix
▶ WebDAV share: Can be mounted as filesystem on many OSes
▶ HTTP: Read access through namenode's embedded web svr
▶ FTP: Standard FTP interface
▶ ...

32

Dimitris Kotzinos

Accessing HDFS directly from Java

▶ Programs can read/write HDFS files directly
▶ Not needed in MapReduce; I/O is handled by the framework

▶ Files are represented as URIs
▶ Example: hdfs://localhost/user/ahae/example.txt

▶ Access is via the FileSystem API
▶ To get access to the file: FileSystem.get()
▶ For reading, call open() -- returns InputStream
▶ For writing, call create() -- returns OutputStream

33

Dimitris Kotzinos

What about permissions?

▶ Since 0.16.1, Hadoop has rudimentary
support for POSIX-style permissions
▶ rwx for users, groups, 'other' -- just like in Unix
▶ 'hadoop fs' has support for chmod, chgrp, chown

▶ But: POSIX model is not a very good fit
▶ Many combinations are meaningless: Files cannot be

executed, and existing files cannot really be written to

▶ Permissions were not really enforced
▶ Hadoop does not verify whether user's identity is genuine
▶ Useful more to prevent accidental data corruption or casual

misuse of information

34

Dimitris Kotzinos

Where are things today?

▶ Since v.20.20x, Hadoop has some security
▶ Kerberos RPC (SASL/GSSAPI)
▶ HTTP SPNEGO authentication for web consoles
▶ HDFS file permissions actually enforced
▶ Various kinds of delegation tokens
▶ Network encryption
▶ For more details, see:

https://issues.apache.org/jira/secure/attachment/12428537/
security-design.pdf

▶ Big changes are coming
▶ Project Rhino (e.g., encrypted data at rest)

35

Dimitris Kotzinos

Recap: HDFS

▶ HDFS: A specialized distributed file system
▶ Good for large amounts of data, sequential reads
▶ Bad for lots of small files, random access, non-append writes

▶ Architecture: Blocks, namenode, datanodes
▶ File data is broken into large blocks (64MB default)
▶ Blocks are stored & replicated by datanodes
▶ Single namenode manages all the metadata
▶ Secondary namenode: Housekeeping & (some) redundancy

▶ Usage: Special command-line interface
▶ Example: hadoop fs -ls /path/in/hdfs

36

Dimitris Kotzinos

Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

37

NEXT

Dimitris Kotzinos

Recap: High-level dataflow

38

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
pu

t d
at

a

Ou
tp

ut
 d

at
a

"The Shuffle"

Intermediate
(key,value) pairs

Dimitris Kotzinos

Detailed dataflow in Hadoop

39

File

File

InputFormat

Split Split Split

RR RR RR

map map map

Partition

Sort

Reduce

OutputFormat

InputFormat

Split Split Split

RR RR RR

map map map

Partition

Sort

Reduce

OutputFormat

File

File

Node 1 Node 2

Local HDFS
store

Local HDFS
store

Combine Combine

Dimitris Kotzinos

Input Format

▶ Defines which input files
should be read, and how
▶ Defaults provided, e.g., TextInputFormat,

DBInputFormat, KeyValueTextInputFormat...

▶ Defines InputSplits
▶ InputSplits break file into separate tasks
▶ Example: one task for each 64MB block (why?)

▶ Provides a factory for RecordReaders
▶ RecordReaders actually read the file into (key,value) pairs
▶ Default format, TextInputFormat, uses byte offset in file as

the key, and line as the value
▶ KeyValueInputFormat reads (key,value) pairs from the file

directly; key is everything up to the first tab character
40

Dimitris Kotzinos

Combiners

▶ Optional component that can
be inserted after the mappers
▶ Input: All data emitted by the mappers

on a given node
▶ Output passed to the partitioner

▶ Why is this useful?
▶ Suppose your mapper counts words by emitting (xyz, 1)

pairs for each word xyz it finds
▶ If a word occurs many times, it is much more efficient to

pass (xyz, k) to the reducer, than passing k copies of (xyz,1)

41

Dimitris Kotzinos

Parititoner

▶ Controls which intermediate
key-value pairs should go
to which reducer

▶ Defines a partition on the set of KV pairs
▶ Number of partitions is the same as the number of reducers

▶ Default partitioner (HashPartitioner) assigns
partition based on a hash of the key

42

Dimitris Kotzinos

Output Format

▶ Counterpart to InputFormat

▶ Controls where output is
stored, and how
▶ Provides a factory for RecordWriter

▶ Several implementations provided
▶ TextOutputFormat (default)
▶ DBOutputFormat
▶ MultipleTextOutputFormat
▶ ...

43

Dimitris Kotzinos

Recap: Dataflow in Hadoop

▶ Hadoop has many components that are
usually hidden from the developer

▶ Many of these can be customized:
▶ InputFormat: Defines how input files are read
▶ InputSplit: Defines how data portions are assigned to tasks
▶ RecordReader: Reads actual KV pairs from input files
▶ Combiner: Mini-reduce step on each node, for efficiency
▶ Partitioner: Assigns intermediate KV pairs to reducers
▶ Comparator: Controls how KV pairs are sorted after shuffle

▶ More details: Chapter 7 of your textbook

44

Dimitris Kotzinos

Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

45

NEXT

Dimitris Kotzinos

Hadoop daemons

▶ TaskTracker
▶ Runs maps and reduces. One per node.

▶ JobTracker
▶ Accepts jobs; assigns tasks to TaskTrackers

▶ DataNode
▶ Stores HDFS blocks

▶ NameNode
▶ Stores HDFS metadata

▶ SecondaryNameNode
▶ Merges edits file with snapshot; "backup" for NameNode

46

A single node can run
more than one of these!

Dimitris Kotzinos

An example configuration

47

JobTracker
NameNode
Secondary NameNode
TaskTracker
DataNode

Small cluster Medium cluster

JobTracker NameNode Secondary
NameNode

Dimitris Kotzinos

Fault tolerance

▶ What if a node fails during a job?
▶ JobTracker notices that the node's TaskTracker no longer

responds; re-executes the failed node's tasks

▶ What specifically should be re-executed?
▶ Depends on the phase the job was in
▶ Mapping phase: Re-execute all maps assigned to failed node
▶ Reduce phase: Re-execute all reduces assigned to the node

▶ Is this sufficient?
▶ No! Failed node may also have completed map tasks, and other nodes

may not have finished copying out the results
▶ Need to re-execute map tasks on the failed node as well!

48

Dimitris Kotzinos

Speculative execution

▶ What if some tasks are much harder, or some
nodes much slower, than the others?
▶ Entire job is delayed!

▶ Solution: Speculative execution
▶ If task is almost complete, schedule a few redundant rasks

on nodes that have nothing else to do
▶ Whichever one finishes first becomes the definitive copy; the

others' results are discarded to prevent duplicates

49

Dimitris Kotzinos

Placement and locality

▶ Which of the replicated blocks should be read?
▶ If possible, pick the closest one (reduces network load)
▶ Distance metric takes into account: Nodes, racks, datacenters

▶ Where should the replicas be put?
▶ Tradeoff between fault tolerance and locality/performance

50

Rack 1 Rack 2 Rack 1 Rack 2

Datacenter A Datacenter B

Block
replicas

Task

Dimitris Kotzinos

Recap: Distributed mode

▶ Five important daemons:
▶ MapReduce daemons: JobTracker, TaskTracker
▶ HDFS daemons: DataNode, NameNode, Secondary NameN.
▶ Workers run TaskTracker+DataNode

▶ Special features:
▶ Transparently re-executes jobs if nodes fail
▶ Speculatively executes jobs to limit impact of stragglers
▶ Rack-aware placement to keep traffic local

51

Dimitris Kotzinos

Big Data Computations on the cloud

52

Dimitris Kotzinos

Plan for today

▶ Introduction
▶ Census example

▶ MapReduce architecture
▶ Data flow
▶ Execution flow
▶ Fault tolerance etc.

53

NEXT

Dimitris Kotzinos

Analogy: National census

▶ Suppose we have
10,000 employees,
whose job is to collate
census forms and
to determine how
many people live in
each city

▶ How would you
organize this task?

54

ht
tp

:/
/w

w
w

.c
en

su
s.

go
v/

20
10

ce
ns

us
/p

df
/2

01
0_

Q
ue

st
io

nn
ai

re
_I

nf
o.

pd
f

Dimitris Kotzinos

National census "data flow"

55

Dimitris Kotzinos

Making things more complicated

▶ Suppose people take vacations, get sick, work
at different rates

▶ Suppose some forms are incorrectly filled out
and require corrections or need to be thrown
away

▶ What if the supervisor gets sick?
▶ How big should the stacks be?
▶ How do we monitor progress?
▶ ...

56

Dimitris Kotzinos

A bit of introspection

▶ What is the main challenge?
▶ Are the individual tasks complicated?
▶ If not, what makes this so challenging?

▶ How resilient is our solution?

▶ How well does it balance work across
employees?
▶ What factors affect this?

▶ How general is the set of techniques?
57

Dimitris Kotzinos

I don't want to deal with all this!!!

▶ Wouldn't it be nice if there were some system
that took care of all these details for you?

▶ Ideally, you'd just tell the system what needs
to be done

▶ That's the MapReduce framework.

58

Dimitris Kotzinos

Abstracting into a digital data flow

59

Filter+Stack
Worker

Filter+Stack
Worker

Filter+Stack
Worker

Filter+Stack
Worker

CountStack
Worker

CountStack
Worker

CountStack
Worker

CountStack
Worker

CountStack
Worker

blue: 4k

green: 4k

cyan: 3k

gray: 1k

orange: 4k

Dimitris Kotzinos

Abstracting once more

▶ There are two kinds of workers:
▶ Those that take input data items and produce output items

for the “stacks”
▶ Those that take the stacks and aggregate the results to

produce outputs on a per-stack basis

▶ We’ll call these:
▶ map: takes (item_key, value), produces one or more

(stack_key, value’) pairs
▶ reduce: takes (stack_key, {set of value’}), produces one or

more output results – typically (stack_key, agg_value)

60

We will refer to this key
as the reduce key

Dimitris Kotzinos

Why MapReduce?

▶ Scenario:
▶ You have a huge amount of data, e.g., all the Google

searches of the last three years
▶ You would like to perform a computation on the data, e.g.,

find out which search terms were the most popular

▶ How would you do it?

▶ Analogy to the census example:
▶ The computation isn't necessarily difficult, but parallelizing

and distributing it, as well as handling faults, is challenging

▶ Idea: A programming language!
▶ Write a simple program to express the (simple) computation,

and let the language runtime do all the hard work
61

Dimitris Kotzinos

Plan for today

▶ Introduction
▶ Census example

▶ MapReduce architecture
▶ Data flow
▶ Execution flow
▶ Fault tolerance etc.

62

NEXT

Dimitris Kotzinos

What is MapReduce?

▶ A famous distributed programming model
▶ In many circles, considered the key building block for

much of Google’s data analysis
▶ A programming language built on it: Sawzall,

http://labs.google.com/papers/sawzall.html
▶ … Sawzall has become one of the most widely used programming languages at

Google. … [O]n one dedicated Workqueue cluster with 1500 Xeon CPUs, there were
32,580 Sawzall jobs launched, using an average of 220 machines each. While running
those jobs, 18,636 failures occurred (application failure, network outage, system
crash, etc.) that triggered rerunning some portion of the job. The jobs read a total of
3.2x1015 bytes of data (2.8PB) and wrote 9.9x1012 bytes (9.3TB).

▶ Other similar languages: Yahoo’s Pig Latin and Pig; Microsoft’s
Dryad

▶ Cloned in open source: Hadoop,
http://hadoop.apache.org/

63

Dimitris Kotzinos

The MapReduce programming model

▶ Simple distributed functional programming primitives
▶ Modeled after Lisp primitives:

▶ map (apply function to all items in a collection) and
▶ reduce (apply function to set of items with a common key)

▶ We start with:
▶ A user-defined function to be applied to all data,
map: (key,value) à (key, value)

▶ Another user-specified operation
reduce: (key, {set of values}) à result

▶ A set of n nodes, each with data
▶ All nodes run map on all of their data, producing new

data with keys
▶ This data is collected by key, then shuffled, and finally reduced
▶ Dataflow is through temp files on GFS

64

Dimitris Kotzinos

Simple example: Word count

▶ Goal: Given a set of documents, count how
often each word occurs
▶ Input: Key-value pairs (document:lineNumber, text)
▶ Output: Key-value pairs (word, #occurrences)
▶ What should be the intermediate key-value pairs?

map(String key, String value) {
// key: document name, line no
// value: contents of line

}

reduce(String key, Iterator values) {

}

for each word w in value:
emit(w, "1")

// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
emit(key, result)

65

Dimitris Kotzinos

Simple example: Word count

66

Mapper
(1-2)

Mapper
(3-4)

Mapper
(5-6)

Mapper
(7-8)

Reducer
(A-G)

Reducer
(H-N)

Reducer
(O-U)

Reducer
(V-Z)

(1, the apple)
(2, is an apple)
(3, not an orange)
(4, because the)
(5, orange)
(6, unlike the apple)
(7, is orange)
(8, not green)

(the, 1)

(apple, 1)

(is, 1)

(apple, 1)
(an, 1)

(not, 1)

(orange, 1)

(an, 1)
(because, 1)

(the, 1)
(orange, 1)

(unlike, 1)

(apple, 1)

(the, 1)

(is, 1)

(orange, 1)

(not, 1)

(green, 1)

(apple, 3)
(an, 2)

(because, 1)
(green, 1)

(is, 2)
(not, 2)

(orange, 3)
(the, 3)

(unlike, 1)

(apple, {1, 1, 1})
(an, {1, 1})

(because, {1})
(green, {1})

(is, {1, 1})
(not, {1, 1})

(orange, {1, 1, 1})
(the, {1, 1, 1})

(unlike, {1})

Each mapper
receives some
of the KV-pairs

as input

The mappers
process the

KV-pairs
one by one

Each KV-pair output
by the mapper is sent
to the reducer that is

responsible for it

The reducers
sort their input

by key
and group it

The reducers
process their

input one group
at a time

1 2 3 4 5

Key range the node
is responsible for

Dimitris Kotzinos

MapReduce dataflow

67

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
pu

t d
at

a

Ou
tp

ut
 d

at
a

"The Shuffle"

Intermediate
(key,value) pairs

What is meant by a 'dataflow'?
What makes this so scalable?

Dimitris Kotzinos

More examples

▶ Distributed grep – all lines matching a pattern
▶ Map: filter by pattern
▶ Reduce: output set

▶ Count URL access frequency
▶ Map: output each URL as key, with count 1
▶ Reduce: sum the counts

▶ Reverse web-link graph
▶ Map: output (target,source) pairs when link to target

found in souce
▶ Reduce: concatenates values and emits (target,list(source))

▶ Inverted index
▶ Map: Emits (word,documentID)
▶ Reduce: Combines these into (word,list(documentID))

68

Dimitris Kotzinos

Common mistakes to avoid

▶ Mapper and reducer should be stateless
▶ Don't use static variables - after map +
reduce return, they should remember
nothing about the processed data!

▶ Reason: No guarantees about which
key-value pairs will be processed by
which workers!

▶ Don't try to do your own I/O!
▶ Don't try to read from, or write to,

files in the file system
▶ The MapReduce framework does all

the I/O for you:
▶ All the incoming data will be fed as arguments to map and reduce
▶ Any data your functions produce should be output via emit

69

HashMap h = new HashMap();
map(key, value) {
if (h.contains(key)) {
h.add(key,value);
emit(key, "X");

}
} Wrong!

map(key, value) {
File foo =
new File("xyz.txt");

while (true) {
s = foo.readLine();
...

}
} Wrong!

Dimitris Kotzinos

More common mistakes to avoid

▶ Mapper must not map too much data to the
same key
▶ In particular, don't map everything to the same key!!
▶ Otherwise the reduce worker will be overwhelmed!
▶ It's okay if some reduce workers have more work than others

▶ Example: In WordCount, the reduce worker that works on the key 'and'
has a lot more work than the reduce worker that works on 'syzygy'.

70

map(key, value) {
emit("FOO", key + " " + value);

}

reduce(key, value[]) {
/* do some computation on
all the values */

}

Wrong!

Dimitris Kotzinos

Designing MapReduce algorithms

▶ Key decision: What should be done by map,
and what by reduce?
▶ map can do something to each individual key-value pair, but

it can't look at other key-value pairs
▶ Example: Filtering out key-value pairs we don't need

▶ map can emit more than one intermediate key-value pair for
each incoming key-value pair

▶ Example: Incoming data is text, map produces (word,1) for each word
▶ reduce can aggregate data; it can look at multiple values, as

long as map has mapped them to the same (intermediate) key
▶ Example: Count the number of words, add up the total cost, ...

▶ Need to get the intermediate format right!
▶ If reduce needs to look at several values together, map

must emit them using the same key!
71

Dimitris Kotzinos

More details on the MapReduce data flow

72

Data partitions
by key

Map computation
partitions

Reduce
computation
partitions

Redistribution
by output’s key

("shuffle")

Coordinator (Default MapReduce
uses Filesystem)

Dimitris Kotzinos

Some additional details

▶ To make this work, we need a few more parts…

▶ The file system (distributed across all nodes):
▶ Stores the inputs, outputs, and temporary results

▶ The driver program (executes on one node):
▶ Specifies where to find the inputs, the outputs
▶ Specifies what mapper and reducer to use
▶ Can customize behavior of the execution

▶ The runtime system (controls nodes):
▶ Supervises the execution of tasks
▶ Esp. JobTracker

73

Dimitris Kotzinos

Some details

▶ Fewer computation partitions than data partitions
▶ All data is accessible via a distributed filesystem with

replication
▶ Worker nodes produce data in key order (makes it easy to

merge)
▶ The master is responsible for scheduling, keeping all

nodes busy
▶ The master knows how many data partitions there are,

which have completed – atomic commits to disk
▶ Locality: Master tries to do work on nodes that

have replicas of the data
▶ Master can deal with stragglers (slow machines) by

re-executing their tasks somewhere else
74

Dimitris Kotzinos

What if a worker crashes?

▶ We rely on the file system being shared
across all the nodes

▶ Two types of (crash) faults:
▶ Node wrote its output and then crashed

▶ Here, the file system is likely to have a copy of the complete output
▶ Node crashed before finishing its output

▶ The JobTracker sees that the job isn’t making progress, and restarts
the job elsewhere on the system

▶ (Of course, we have fewer nodes to do
work…)

▶ But what if the master crashes?

75

Dimitris Kotzinos

Other challenges

▶ Locality
▶ Try to schedule map task on machine that already has data

▶ Task granularity
▶ How many map tasks? How many reduce tasks?

▶ Dealing with stragglers
▶ Schedule some backup tasks

▶ Saving bandwidth
▶ E.g., with combiners

▶ Handling bad records
▶ "Last gasp" packet with current sequence number

76

Dimitris Kotzinos

Scale and MapReduce

▶ From a particular Google paper on a language built
over MapReduce:
▶ … Sawzall has become one of the most widely used programming

languages at Google. …
[O]n one dedicated Workqueue cluster with 1500 Xeon CPUs, there
were 32,580 Sawzall jobs launched, using an average of 220
machines each.
While running those jobs, 18,636 failures occurred (application
failure, network outage, system crash, etc.) that triggered
rerunning some portion of the job. The jobs read a total of
3.2x1015 bytes of data (2.8PB) and wrote 9.9x1012 bytes (9.3TB).

77

So
ur

ce
:

In
te

rp
re

tin
g

th
e

Da
ta

:
Pa

ra
lle

l A
na

ly
si

s
w

ith
 S

aw
za

ll
(R

ob
 P

ik
e,

 S
ea

n
Do

rw
ar

d,
 R

ob
er

t
Gr

ie
se

m
er

, S
ea

n
Q

ui
nl

an
)

Dimitris Kotzinos

Recap: MapReduce dataflow

78

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
pu

t d
at

a

Ou
tp

ut
 d

at
a

"The Shuffle"

Intermediate
(key,value) pairs

Dimitris Kotzinos

Recap: MapReduce

79

map(key , value)
{

}

reduce(rkey , rvalues)
{

}

String[] words = value.split(" ");
for each w in words
emit(w, 1);

Integer result = 0;
foreach v in rvalues
result = result + v;

emit(rkey, v);

:URL :Document

:String :Integer[]

reduce gets all the
intermediate values
with the same rkey

These types can be (and often are)
different from the ones in map()

Produces intermediate
key-value pairs that

are sent to the reducer

Any key-value pairs emitted
by the reducer are added to

the final output

These types depend on
the input data

Both map() and reduce() are
stateless: Can't have a 'global

variable that is preserved
across invocations!

Dimitris Kotzinos

Plan for today

▶ Single-pass algorithms in MapReduce
▶ Filtering algorithms
▶ Aggregation algortihms
▶ Intersections and joins
▶ Partial Cartesian products
▶ Sorting

80

NEXT

Dimitris Kotzinos

The basic idea

▶ Let’s consider single-pass algorithms
▶ Need to take the algorithm and break it into

filter/collect/aggregate steps
▶ Filter/collect becomes part of the map function
▶ Collect/aggregate becomes part of the reduce function

▶ Note that sometimes we may need multiple
map / reduce stages – chains of maps and
reduces

▶ Let’s see some examples
81

Dimitris Kotzinos

Filtering algorithms

▶ Goal: Find lines/files/tuples with a particular
characteristic

▶ Examples:
▶ grep Web logs for requests to *.upenn.edu/*
▶ find in the Web logs the hostnames accessed by 192.168.2.1
▶ locate all the files that contain the words 'Apple' and 'Jobs'

▶ Generally: map does most of the work,
reduce may simply be the identity

82

Dimitris Kotzinos

Aggregation algorithms

▶ Goal: Compute the maximum, the sum, the
average, ..., over a set of values

▶ Examples:
▶ Count the number of requests to *.upenn.edu/*
▶ Find the most popular domain
▶ Average the number of requests per page per Web site

▶ Often: map may be simple or the identity

83

Dimitris Kotzinos

A more complex example

▶ Goal: Billing for a CDN like Amazon CloudFront
▶ Input: Log files from the edge servers. Two files per domain:

▶ access_log-www.foo.com-20111006.txt: HTTP accesses
▶ ssl_access_log-www.foo.com-20111006.txt: HTTPS accesses
▶ Example line:
158.130.53.72 - - [06/Oct/2011:16:30:38 -0400] "GET
/largeFile.ISO HTTP/1.1" 200 8130928734 "-"
"Mozilla/5.0 (compatible; MSIE 5.01; Win2000)"

▶ Mapper receives (filename,line) tuples
▶ Billing policy (simplified):

▶ Billing is based on a mix of request count and data traffic (why?)
▶ 10,000 HTTP requests cost $0.0075
▶ 10,000 HTTPS requests cost $0.0100
▶ One GB of traffic costs $0.12

▶ Desired output is a list of (domain, grandTotal) tuples

84

Dimitris Kotzinos

Intersections and joins

▶ Goal: Intersect multiple different inputs on
some shared values
▶ Values can be equal, or meet a certain predicate

▶ Examples:
▶ Find all documents with the words “data” and “centric” given

an inverted index
▶ Find all professors and students in common courses and

return the pairs <professor,student> for those cases

85

Dimitris Kotzinos

Partial Cartesian products

▶ Goal: Find some complex relationship, e.g.,
based on pairwise distance

▶ Examples:
▶ Find all pairs of sites within 100m of each other

▶ Generally hard to parallelize
▶ But may be possible if we can divide the input into bins or

tiles, or link it to some sort of landmark
▶ Overlap the tiles? (how does this scale?)
▶ Generate landmarks using clustering?

86

Dimitris Kotzinos

Sorting

▶ Goal: Sort input

▶ Examples:
▶ Return all the domains covered by Google's index and the

number of pages in each, ordered by the number of pages

▶ The programming model does not support
this per se, but the implementations do
▶ Let’s take a look at what happens in the Shuffle stage

87

Dimitris Kotzinos

Plan for today

▶ Single-pass algorithms in MapReduce
▶ Filtering algorithms
▶ Aggregation algortihms
▶ Intersections and joins
▶ Partial Cartesian products
▶ Sorting

88

NEXT

Dimitris Kotzinos

The shuffle stage revisited

89

File

File

InputFormat

Split Split Split

RR RR RR

map map map

Partition

Sort

Reduce

OutputFormat

InputFormat

Split Split Split

RR RR RR

map map map

Partition

Sort

Reduce

OutputFormat

File

File

Node 1 Node 2

File system File system

Combine Combine

Shuffle really
consists of
two parts:
• Partition
• Sort

Example: Hadoop

Dimitris Kotzinos

Shuffle as a sorting mechanism

▶ We can exploit the per-node sorting operation
done by the Shuffle stage
▶ If we have a single reducer, we will get sorted output
▶ If we have multiple reducers, we can get partly sorted

output (or better – consider an order-preserving hash)
▶ Note it’s quite easy to write a last-pass file that merges all of the part-

r-000x files
▶ We can use a heap to do this

▶ Let’s see an example!
▶ Return all the domains covered by Google's index and the

number of pages in each, ordered by the number of pages

90

Dimitris Kotzinos

Strengths and weaknesses

▶ What problems can you solve well with
MapReduce?
▶ ... in a single pass?
▶ ... in multiple passes?

▶ Are there problems you cannot solve
efficiently with MapReduce?

▶ Are there problems it can't solve at all?

▶ How does it compare to other ways of doing
large-scale data analysis?
▶ Is MapReduce always the fastest/most efficient way?

91

Dimitris Kotzinos

Recap: MapReduce algorithms

▶ A variety of different tasks can be expressed
as a single-pass MapReduce program
▶ Filtering and aggregation + combinations of the two
▶ Joins on shared elements
▶ If we allow multiple MapReduce passes or even fixpoint

iteration, we can do even more (see later)

▶ But it does not work for all tasks
▶ Partial Cartesian product not an ideal fit, but can be made to

work with binning and tiling
▶ Sorting doesn't work at all, at least in the abstract model,

but the implementations support it

92

Dimitris Kotzinos

Big Data Storage on the cloud

93

Key-Value Stores

Dimitris Kotzinos

Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

94

NEXT

Dimitris Kotzinos

Complex service, simple storage

▶ PC users see a rich, powerful interface
▶ Hierarchical namespace (directories); can move, rename,

append to, truncate, (de)compress, view, delete files, ...

▶ But the actual storage device is very simple
▶ HDD only knows how to read and write fixed-size data blocks

▶ Translation done by the operating system
95

Operating system
Fixed-size blocks
- read
- write

Variable-size files
- read, write, append
- move, rename
- lock, unlock
- ...

Dimitris Kotzinos

Analogy to cloud storage

▶ Many cloud services have a similar structure
▶ Users see a rich interface (shopping carts, product categories,

searchable index, recommendations, ...)

▶ But the actual storage service is very simple
▶ Read/write 'blocks', similar to a giant hard disk

▶ Translation done by the web service
96

Web service
Key/value store
- read, write
- delete

Shopping carts
Friend lists
User accounts
Profiles
...

Dimitris Kotzinos

Key-value stores

▶ The key-value store (KVS) is a simple
abstraction for managing persistent state
▶ Data is organized as (key,value) pairs
▶ Only three basic operations:

▶ PUT(key, value)
▶ GET(key) → value
▶ Delete(key)

97

(windows,)

(bob, bschmitt@foo.com)
(gettysburg, "Four score and seven years ago...")
(29ck2dxa1, 0128ckso1$9#*!!8349e)

Keys Values

Dimitris Kotzinos

Examples of KVS

▶ Where have you seen this concept before?

▶ Conventional examples outside the cloud:
▶ In-memory associative arrays and hash tables – limited to a

single application, only persistent until program ends
▶ On-disk indices (like BerkeleyDB)
▶ "Inverted indices" behind search engines
▶ Database management systems – multiple KVSs++
▶ Distributed hashtables (e.g., on top of Chord/Pastry)

98

Dimitris Kotzinos

Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

99

NEXT

Dimitris Kotzinos

Supporting an Internet service with a KVS

▶ We’ll do this through a central server, e.g., a
Web or application server

▶ Two main issues:
1. There may be multiple concurrent

requests from different clients
▶ These might be GETs, PUTs, DELETEs, etc.

2. These requests may come from different
parts of the network, with message propagation delays

▶ It takes a while for a request to make it to the server!
▶ We’ll have to handle requests in the order received (why?)

100

BA

S

Dimitris Kotzinos

Managing concurrency in a KVS

▶ What happens if we do multiple GET
operations in parallel?
▶ ... over different keys?
▶ ... over the same key?

▶ What if we do multiple PUT operations in
parallel? or a GET and a PUT?

▶ What is the unit of protection (concurrency
control) that is necessary here?

101

Dimitris Kotzinos

Concurrency control

▶ Most systems use locks on individual items
▶ Each requestor asks for the lock
▶ A lock manager processes these requests (typically

in FIFO order) as follows:
▶ Lock manager grants the lock to a requestor
▶ Requestor makes modifications
▶ Then releases the lock when it’s done

▶ There are several kinds of locks, and several
other alternatives
▶ Example: S/X lock
▶ See CIS 455 for more details

Dimitris Kotzinos

Limitations of per-key concurrency control

▶ Suppose I want to transfer credits
from my WoW account to my friend’s?
▶ … while someone else is doing a GET

on my (and her) credit amounts to see if
they want to trade?

▶ This is where one needs a database
management system (DBMS) or transaction
processing manager (app server)
▶ Allows for “locking” at a higher level, across keys and

possibly even systems (see CIS 330 for more details)

▶ Could you implement higher-level locks within
the KVS? If so, how?

103

Dimitris Kotzinos

Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

104

NEXT

Dimitris Kotzinos

Key-Multi-Value stores

▶ What if I want to have multiple values for
the same key in a KVS?
▶ Example: Multiple images with the same search keyword

▶ Option 1: Make the “value” a collection object
like a set
▶ Then PUT really becomes GET → add → PUT

▶ Option 2: Allow the KVS to store multiple
values per key
▶ Requires a cursor that scrolls through the matches
▶ Similar to Java's notion of an iterator

105

Dimitris Kotzinos

Accessing data

▶ How can we retrieve all the values a particular
key maps to?
▶ There could be a very large number of them

(remember HW1MS1!)

▶ Idea: Use a cursor
▶ Follows the following programming pattern:

106

cursor = kvs.getFirstMatch(key);

while (cursor != null) {
value = cursor.getValue();
cursor = kvs.getNextMatch(key, cursor);

}

with a cursor

Dimitris Kotzinos

Recap: Key-value stores

▶ KVS: A simple abstraction for managing
persistent data state
▶ Interface consists only of PUT and GET (+possibly DELETE)
▶ Some variants allow multiple values per key
▶ Examples: Distributed hashtables, associative arrays, ...
▶ Extremely scalable implementations exist

▶ Challenge: Concurrency control
▶ From the perspective of the KVS, values for different keys

are independent
▶ Difficult to change multiple values atomically
▶ Some applications may require higher-level locking

107

Dimitris Kotzinos

Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

108

NEXT

Dimitris Kotzinos

Key-Value stores on the Cloud

▶ Many situations need hosting of large data sets
▶ Examples: Amazon catalog, eBay listings, Facebook pages, …

▶ Ideal: Abstraction of a 'big disk in the clouds',
which would have:
▶ Perfect durability – nothing would ever disappear in a crash
▶ 100% availability – we could always get to the service
▶ Zero latency from anywhere on earth – no delays!
▶ Minimal bandwidth utilization – we only send across the

network what we absolutely need
▶ Isolation under concurrent updates – make sure data stays

consistent

109

Dimitris Kotzinos

The inconveniences of the real world
▶ Why isn't this feasible?

▶ The “cloud” exists over a physical network
▶ Communication takes time, esp. across the globe
▶ Bandwidth is limited, both on the backbone and endpoint

▶ The “cloud” has imperfect hardware
▶ Hard disks crash
▶ Servers crash
▶ Software has bugs

▶ Can you map these to the previous desiderata?
110

Dimitris Kotzinos

Finding the right tradeoff

▶ In practice, we can't have everything
▶ ... but most applications don't really need 'everything'!

▶ Some observations:
1. Read-only (or read-mostly) data is easiest to support

▶ Replicate it everywhere! No concurrency issues!
▶ But only some kinds of data fit this pattern – examples?

2. Granularity matters: “Few large-object” tasks generally
tolerate longer latencies than “many small-object” tasks
▶ Fewer requests, often more processing at the client
▶ But it’s much more expensive to replicate or to update!

3. Maybe it makes sense to develop separate solutions for large
read-mostly objects vs. small read-write objects!
▶ Different requirements → different technical solutions

111

Dimitris Kotzinos

Specialized KVS

▶ Cloud KVS are often specialized for a
particular tradeoff or usage scenario

▶ Example: Amazon’s solutions
▶ Simple Storage Service (S3):

▶ large objects – files, virtual machines, etc.
▶ assumes objects change infrequently
▶ objects are opaque to the storage system

▶ SimpleDB:
▶ small objects – Java objects, records, etc.
▶ generally updated more frequently; greater need for consistency
▶ generally multiple attributes or properties, which are exposed to

the storage system
112

Dimitris Kotzinos

Recap: KVS on the cloud

▶ Ideally, we would simply like the abstraction
of a 'big disk in the cloud'
▶ Perfect durability, availability, consistency, throughput, ...

▶ Practical constraints require compromises
▶ Propagation delay, unreliable hardware/software, ...

▶ Hence, we need to make the right tradeoff
▶ For example, specialize KVS for particular workloads
▶ No one-size-fits-all solution; different solutions are useful

in different situations

113

Dimitris Kotzinos

Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

114

NEXT

Dimitris Kotzinos

Big Objects: Amazon S3

▶ S3 = Simple Storage System
▶ Think roughly of an Internet file system

▶ Stores large objects (=values) that may have
access permissions
▶ Used in “cloud backup” services like Jungle Disk
▶ Used to distribute software packages
▶ Used internally by Amazon to store virtual machines

▶ “Up to 99.99999999% durability, 99.99%
availability” (“ten nines” and “four nines”)

115

Dimitris Kotzinos

S3: Key concepts

▶ S3 consists of:
▶ objects – named items stored in S3
▶ buckets of objects – think of these as

volumes in a filesystem
▶ the console includes a notion of folders,

but these are not intrinsic to S3

▶ Names within a bucket must uniquely identify
a single object
▶ i.e., keys must be unique

116

Dimitris Kotzinos

S3: Keys and objects

▶ What can we use as keys?
▶ Keys can be any string

▶ What can we use as objects?
▶ Objects can be from 1 byte to 5 TB, any format
▶ Number of objects is 'unlimited'

▶ Where can objects be stored?
▶ Can be assigned to specific geographic regions (Washington,

Virginia, California, Ireland, Singapore, Tokyo, ...)
▶ Why is this important? (name at least four reasons!)

117

low latency to customer
minimize fault correlation

regulatory/legal requirements
low-storage-cost regions

Dimitris Kotzinos

S3: Different ways to access objects

▶ Objects in S3 can be accessed
▶ ... via REST or SOAP
▶ ... via BitTorrent
▶ ... over the web: http://s3.amazonaws.com/bucket/key
▶ Web Services use HTTP (the Web browser protocol over

sockets) and XML to send requests and data
▶ AWS Console also enables configuration

▶ We’ll mostly be using Java(script) libraries
to interact with S3
▶ You’ll just call them as normal functions, but they will

open and close sockets as necessary
▶ http://bitbucket.org/jmurty/jets3t/wiki/Home
▶ http://aws.amazon.com/sdkfornodejs/

118

Dimitris Kotzinos

S3: Access permissions

▶ Permissions are assigned through
Access Control Lists (ACLs)
▶ Essentially, a list of users/groups à permissions
▶ Bucket permissions are inherited by objects unless

overridden at the object level

▶ What can you control?
▶ Can be at the level of buckets or individual objects
▶ Available rights: Read, write, read ACL, write ACL
▶ Possible grantees: Everyone, authenticated users, specific

users (by AWS account email address)

119

Dimitris Kotzinos

S3: Uploading an object

▶ Step 1: Hit 'upload' in management console

120

Dimitris Kotzinos

S3: Uploading an object

▶ Step 2: Select files
▶ Step 3: Set metadata (or accept default)
▶ Step 4: Set permissions (or make public)

121

Dimitris Kotzinos

S3: Current pricing and usage

122
ht

tp
:/

/a
w

s.
am

az
on

.c
om

/s
3/

 (
9/

19
/2

01
3)

Dimitris Kotzinos

S3: Bucket operations

▶ Create bucket
(optionally versioned;
see later)

▶ Delete bucket

▶ List all keys in bucket (may not be 100% up to date)

▶ Modify bucket permissions

123

Source: Amazon S3 User’s Guide

Dimitris Kotzinos

S3: Object operations

▶ PUT object in bucket
▶ GET object from bucket
▶ DELETE object from bucket
▶ Modify object permissions

▶ The key issue: How do we manage
concurrent updates?
▶ Will I see objects you delete? the latest version? etc.

124

Dimitris Kotzinos

S3: Consistency models

▶ Consistency model depends on the region
▶ US West, EU, Asia Pacific, S. America:

read-after-write consistency for PUTs of new objects and
eventual consistency for overwrite PUTs and DELETEs

▶ S3 buckets in the US Standard Region: eventual consistency

▶ Read-after-write consistency:
▶ Each read or write operation becomes effective at some

point between its start time and its completion time
▶ Reads return the value of the last effective write

125

Time

Client 1:
Client 2:

W1: Cat

W2: Dog

R1

R2

Dimitris Kotzinos

S3: Versioning

▶ S3 handles consistency through versioning
rather than locking
▶ The idea: every bucket + key maps to a list of versions

▶ [bucket+key] à [object v1] [object v2] [object v3] …
▶ Each time we PUT an object, it gets a new version

▶ The last-received PUT overwrites any previous ones!
▶ When we GET:

▶ An unversioned request likely receives the last version – but this is not
guaranteed depending on propagation delays

▶ A request for bucket + key + version uniquely maps to a single object!

▶ Versioning can be enabled for each bucket
▶ Why would you (not) want versioning?

126

Dimitris Kotzinos

Recap: Amazon S3

▶ A key-value store for large objects
▶ Buckets, keys, objects, folders
▶ Various ways to access objects, e.g., HTTP and BitTorrent

▶ Provides eventual consistency
▶ +/- a few details that depend on the region

▶ Supports versioning and access control
▶ Access control is based on ACLs

127

Dimitris Kotzinos

Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

128

NEXT

Dimitris Kotzinos

What is Amazon SimpleDB?

▶ A highly scalable, non-relational data store
▶ Despite its name, not really a database
▶ Stronger consistency guarantees than S3
▶ Highly scalable; built-in replication; automatic indexing
▶ No 'real' transactions, just a conditional put/delete
▶ No 'real' relations, just a fairly basic select

129

S3 SimpleDB RDS

Dimitris Kotzinos

SimpleDB: Data model

▶ Somewhat analogous to a spreadsheet:
▶ Domains: Entire 'tables'; like buckets
▶ Items: Names with attribute-multivalue sets

▶ For example, an item could have more than one street address

▶ It is possible to add attributes later
▶ No pre-defined schema

130

Customer
ID

First
name

Last
name

Street
address

City State Zip Email

123 Bob Smith 123 Main St Springfield MO 65801

456 James Johnson 456 Front St Seattle WA 98104 james@foo.com
Items

Name
(key) Attributes (key-multivalue)

Dimitris Kotzinos

SimpleDB: Basic operations

▶ ListDomains
▶ CreateDomain, DeleteDomain
▶ DomainMetadata

▶ PutAttributes
▶ Also atomic BatchPutAttributes – all must succeed

▶ DeleteAttributes
▶ GetAttributes

▶ Select (like an SQL query)
131

Dimitris Kotzinos

SimpleDB: PUT and GET

▶ PutAttributes has a very simple model:
▶ Specify the domain and the item name
▶ [key] à [list of name/value pairs], where we list

Attribute.1.Name, Attribute.1.Value, etc.
▶ Each Attribute.X has an optional Replace flag (Replace = 0

means add another value)

▶ GetAttributes
▶ Specify the domain and the item name + optionally attribute
▶ Can choose whether the read should be consistent or not

▶ What are the advantages of each choice?

132

Dimitris Kotzinos

SimpleDB: Conditional Put

▶ SimpleDB also supports a conditional put
▶ Item is updated only if the existing value of an attribute

matches the value you specify; otherwise update is rejected

▶ Can we use this to guarantee consistency?
▶ Idea: implement a version number, e.g., like this:

133

do {
List<Attributes> attribs = kvs.getAttributesFor(key);
... update the attribute values as we like ...
retCode = kvs.conditionalPut(key, attribs,

(“version”, attribs.get(“version”)));
} while (retcode == ErrorCode.ConditionalCheckFailed);

Dimitris Kotzinos

SimpleDB: Select

▶ A very simple “query” interface based on
SQL syntax
▶ SELECT output_list FROM domain_name WHERE expression

[sort expression] [limit spec]
▶ Example: "select * from books where author like 'Tan%' and

price <= 55.90 and year is not null order by title desc limit 50"
▶ Can choose whether or not read should be consistent
▶ Supports a cursor

134

Dimitris Kotzinos

Alternatives to SimpleDB

▶ There is a similar service to SimpleDB
underneath most major “cloud” companies’
infrastructure
▶ Google calls theirs BigTable
▶ Yahoo’s is called PNUTS
▶ See reading list at the end

▶ All consist of items with a variable set of
attribute-value pairs
▶ More flexible than a relational DBMS table
▶ But don’t support full-fledged transactions

135

Dimitris Kotzinos

Recap: Amazon SimpleDB

▶ A scalable, non-relational data store
▶ Domains, items, keys, values
▶ Stronger consistency than S3
▶ No pre-defined schema

136

Dimitris Kotzinos

Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

137

Dimitris Kotzinos

Where could we go beyond this?

▶ KVSs present one of the simplest data represen-
tations: key + one or more objects/properties

▶ Some alternatives:
▶ Relational databases represent data as interlinked tables

(in essence, a limited form of a graph)
▶ Hierarchical storage systems represent data as nested

entities
▶ More general graph storage might represent entire graph

structures with links
▶ All are implementable over a KVS

▶ But all allow higher level requests (e.g., paths), and might
optimize for this

▶ Example: I know that the customer always asks for images related to
patients’ records, so maybe we should put the two in the same place

138

Dimitris Kotzinos

Summary: Cloud Key/Value Stores

▶ Attempt to provide very high durability,
availability in a persistent, geographically
distributed storage system

▶ Need to choose compromises due to
limitations of communications, hardware,
software
▶ Large, seldom-changing objects – eventual consistency and

versioned model in S3
▶ Small, more frequently changing objects – lower-latency

response, conditional updates in SimpleDB

▶ Both are useful in different situations
139

Dimitris Kotzinos

Further reading
▶ A. Rowstron and P. Druschel: "Storage management and caching in

PAST, a large-scale, persistent peer-to-peer storage utility" (SOSP'01)
▶ http://www.research.microsoft.com/~antr/PAST/past-sosp.pdf

▶ F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. Gruber: "Bigtable: A Distributed Storage
System for Structured Data" (OSDI'06)
▶ labs.google.com/papers/bigtable-osdi06.pdf

▶ G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-man, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels: "Dynamo:
Amazon's Highly Available Key-Value Store" (SOSP'07)
▶ http://dl.acm.org/citation.cfm?id=1294281

▶ B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni: "PNUTS: Yahoo!'s
Hosted Data Serving Platform" (PVLDB'08)
▶ http://infolab.stanford.edu/~usriv/papers/pnuts.pdf

▶ H. Lim, B. Fan, D. Andersen, and M. Kaminsky: "SILT: A Memory-
Efficient, High-Performance Key-Value Store" (SOSP'11)
▶ http://www.cs.cmu.edu/~dga/papers/silt-sosp2011.pdf

140

Dimitris Kotzinos

Slides adapted (under permission) from
Andreas Haeberlen
(NETS 212: Scalable and Cloud Computing)
CIS Department, Penn-State University

141

Dimitris Kotzinos

Class projects

142

Big Data in ???

Dimitris Kotzinos

Big Data in ???

▶ Pick a subject in groups of 2 (online at the
class website starting from tomorrow):
▶ Astronomy
▶ Energy
▶ Bioinformatics
▶ Cities
▶ Healthcare

▶ How to pick:
▶ Send an e-mail to: Dan.Vodislav@u-cergy.fr
▶ FIFO
▶ Send 3 choices ordered
▶ By Wednesday 04/02 noon

143

Dimitris Kotzinos

What is expected?

▶ A report of around 5 to 6 pages
▶ A presentation of 15 min + time for questions
▶ Report and Presentation Language can be

English or French

▶ Make sure that you understood the problem
correctly

▶ Don’t focus on technical details; add
references if needed

▶ Try to collect/add additional information
144

Dimitris Kotzinos

Report structure

Big Data and Healthcare
▶ Introduction

▶ Set the context
▶ Describe the problem
▶ Identify sources of big data

▶ Big Data in Healthcare
▶ Types of data
▶ Properties of data (size, velocity, variety, etc.)
▶ Open Data
▶ Linked Data (models, ontologies, etc.)

145

Dimitris Kotzinos

Report structure

▶ Methods Used to Process Big Data
▶ Methods to collect data
▶ Mining methods
▶ Processing methods
▶ Analytics
▶ Privacy/Trust concerns

▶ Infrastructure to process Big Data
▶ Centralized / distributed
▶ Cloud computing
▶ Public / private processing

▶ Conclusions

146

