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Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution
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2002-2004: Lucene and Nutch

▶ Early 2000s: Doug Cutting develops 
two open-source search projects:
▶ Lucene: Search indexer

▶ Used e.g., by Wikipedia
▶ Nutch: A spider/crawler 

(with Mike Carafella)

▶ Nutch
▶ Goal: Web-scale, crawler-based search
▶ Written by a few part-time developers
▶ Distributed, 'by necessity'
▶ Demonstrated 100M web pages on 4 nodes, but true 

'web scale' still very distant
4
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2004-2006: GFS and MapReduce 

▶ 2003/04: GFS, MapReduce papers published
▶ Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: "The 

Google File System", SOSP 2003
▶ Jeffrey Dean and Sanjay Ghemawat: "MapReduce: Simplified 

Data Processing on Large Clusters", OSDI 2004
▶ Directly addressed Nutch's scaling issues

▶ GFS & MapReduce added to Nutch
▶ Two part-time developers over two years (2004-2006)
▶ Crawler & indexer ported in two weeks
▶ Ran on 20 nodes at IA and UW
▶ Much easier to program and run, scales to several 100M web 

pages, but still far from web scale
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2006-2008: Yahoo

▶ 2006: Yahoo hires Cutting
▶ Provides engineers, clusters, users, ...
▶ Big boost for the project; Yahoo spends tens of M$
▶ Not without a price: Yahoo has a slightly different focus 

(e.g., security) than the rest of the project; delays result

▶ Hadoop project split out of Nutch
▶ Finally hit web scale in early 2008

▶ Cutting is now at Cloudera
▶ Startup; started by three top engineers from Google, 

Facebook, Yahoo, and a former executive from Oracle
▶ Has its own version of Hadoop; software remains free, but 

company sells support and consulting services
▶ Was elected chairman of Apache Software Foundation

6
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Who uses Hadoop?

▶ Hadoop is running search on some of the 
Internet's largest sites:
▶ Amazon Web Services: Elastic MapReduce
▶ AOL: Variety of uses, e.g., behavioral analysis & targeting
▶ EBay: Search optimization (532-node cluster)
▶ Facebook: Reporting/analytics, machine learning (1100 m.)
▶ Fox Interactive Media: MySpace, Photobucket, Rotten T.
▶ Last.fm: Track statistics and charts
▶ IBM: Blue Cloud Computing Clusters
▶ LinkedIn: People You May Know (2x50 machines)
▶ Rackspace: Log processing
▶ Twitter: Store + process tweets, log files, other data
▶ Yahoo: >36,000 nodes; biggest cluster is 4,000 nodes

7
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Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution
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Simplified scenario

▶ In this section, I will demonstrate how to use 
Hadoop in standalone mode
▶ Useful for development and debugging (NOT for production)
▶ Single node (e.g., your laptop computer)
▶ No jobtrackers or tasktrackers
▶ Data in local file system, not in HDFS

▶ This is how the Hadoop installation in your 
virtual machine works

▶ Later: Fully-distributed mode
▶ Used when running Hadoop on actual clusters

9



Dimitris Kotzinos

Recap: MapReduce dataflow
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What do we need to write?
▶ A mapper

▶ Accepts (key,value) pairs from the input
▶ Produces intermediate (key,value) pairs, which are then 

shuffled

▶ A reducer
▶ Accepts intermediate (key,value) pairs
▶ Produces final (key,value) pairs for the output

▶ A driver
▶ Specifies which inputs to use, where to put the outputs
▶ Chooses the mapper and the reducer to use

▶ Hadoop takes care of the rest!!
▶ Default behaviors can be customized by the driver

11
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Hadoop data types

▶ Hadoop uses its own serialization
▶ Java serialization is known to be very inefficient

▶ Result: A set of special data types
▶ All implement the 'Writable' interface
▶ Most common types shown above; also has some more 

specialized types (SortedMapWritable, ObjectWritable, ...)
▶ Caution: Behavior somewhat unusual

12

Name Description JDK equivalent
IntWritable 32-bit integers Integer
LongWritable 64-bit integers Long
DoubleWritable Floating-point numbers Double
Text Strings String
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The Mapper

▶ Extends abstract 'Mapper' class
▶ Input/output types are specified as type parameters

▶ Implements a 'map' function
▶ Accepts (key,value) pair of the specified type
▶ Writes output pairs by calling 'write' method on context
▶ Mixing up the types will cause problems at runtime (!)

13

import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.io.*;

public class FooMapper extends Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable key, Text value, Context context) {
context.write(new Text("foo"), value); 

}

}

Input format
(file offset, line)

Intermediate format
can be freely chosen
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The Reducer

▶ Extends abstract 'Reducer' class
▶ Must specify types again (must be compatible with mapper!)

▶ Implements a 'reduce' function
▶ Values are passed in as an 'Iterable'
▶ Caution: These are NOT normal Java classes. Do not store 

them in collections - content can change between iterations!

14

import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.io.*; 

public class FooReducer extends Reducer<Text, Text, IntWritable, Text> {

public void reduce(Text key, Iterable<Text> values, Context context) 
throws java.io.IOException, InterruptedException 

{
for (Text value: values)
context.write(new IntWritable(4711), value);

}

}

Intermediate format
(same as mapper output) Output format

Note: We may get
multiple values for

the same key!
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The Driver
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import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FooDriver {
public static void main(String[] args) throws Exception {

Job job = new Job();
job.setJarByClass(FooDriver.class);

FileInputFormat.addInputPath(job, new Path("in"));
FileOutputFormat.setOutputPath(job, new Path("out"));

job.setMapperClass(FooMapper.class);
job.setReducerClass(FooReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
}

}

▶ Specifies how the job is to be executed
▶ Input and output directories; mapper & reducer classes

Mapper&Reducer are
in the same Jar as

FooDriver

Input and Output
paths

Format of the (key,value)
pairs output by the

reducer
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Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution
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Manual compilation

▶ Goal: Produce a JAR file that contains the classes for 
mapper, reducer, and driver
▶ This can be submitted to the Job Tracker, or run directly through Hadoop

▶ Step #1: Put hadoop-core-1.0.3.jar into classpath:
export CLASSPATH=$CLASSPATH:/path/to/hadoop/hadoop-core-1.0.3.jar

▶ Step #2: Compile mapper, reducer, driver:
javac FooMapper.java FooReducer.java FooDriver.java

▶ Step #3: Package into a JAR file:
jar cvf Foo.jar *.class

▶ Alternative: "Export..."/"Java JAR file" in Eclipse
17
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Compilation with Ant

▶ Apache Ant: A build tool for Java (~"make")
▶ Run "ant jar" to build the JAR automatically
▶ Run "ant clean" to clean up derived files (like make clean)

18

<project name="foo" default="jar" basedir="./">
<target name="init">
<mkdir dir="classes"/>

</target>

<target name="compile" depends="init">
<javac srcdir="src" destdir="classes" includes="*.java" debug="true"/>

</target>

<target name="jar" depends="compile">
<jar destfile="foo.jar">
<fileset dir="classes" includes="**/*.class"/>

</jar>
</target>

<target name="clean">
<delete dir="classes"/>
<delete file="foo.jar"/>

</target>
</project>

Directory where
source files

are kept

Clean up any
derived files

Makes the JAR
file
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Standalone mode installation

▶ What is standalone mode?
▶ Installation on a single node
▶ No daemons running (no Task Tracker, Job Tracker)
▶ Hadoop runs as an 'ordinary' Java program
▶ Used for debugging

19
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Running a job in standalone mode

▶ Step #1: Create & populate input directory
▶ Configured in the Driver via addInputPath()
▶ Put input file(s) into this directory (ok to have more than 1)
▶ Output directory must not exist yet

▶ Step #2: Run Hadoop
▶ As simple as this: hadoop jar <jarName> <driverClassName>
▶ Example: hadoop jar foo.jar upenn.nets212.FooDriver
▶ In verbose mode, Hadoop will print statistics while running

▶ Step #3: Collect output files

20
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Recap: Writing simple jobs for Hadoop
▶ Write a mapper, reducer, driver

▶ Custom serialization → Must use special data types (Writable)
▶ Explicitly declare all three (key,value) types

▶ Package into a JAR file
▶ Must contain class files for mapper, reducer, driver
▶ Create manually (javac/jar) or automatically (ant)

▶ Running in standalone mode
▶ hadoop jar foo.jar FooDriver
▶ Input and output directories in local file system

21
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Wait a second...

▶ Wasn't Hadoop supposed to be very scalable?
▶ Work on Petabytes of data, run on thousands of machines

▶ Some more puzzle pieces are needed
▶ Special file system that can a) hold huge amounts of data, 

and b) feed them into MapReduce efficiently
→ Hadoop Distributed File System (HDFS)

▶ Framework for distributing map and reduce tasks across 
many nodes, coordination, fault tolerance...

→ Fully distributed mode
▶ Mechanism for customizing dataflow for particular 

applications (e.g., non-textual input format, special sort...)
→ Hadoop data flow

22
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Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution
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What is HDFS?

▶ HDFS is a distributed file system
▶ Makes some unique tradeoffs that are good for MapReduce

▶ What HDFS does well:
▶ Very large read-only or append-only files (individual files may 

contain Gigabytes/Terabytes of data)
▶ Sequential access patterns

▶ What HDFS does not do well:
▶ Storing lots of small files
▶ Low-latency access
▶ Multiple writers
▶ Writing to arbitrary offsets in the file

24
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HDFS versus NFS

▶ Single machine makes part 
of its file system available to 
other machines

▶ Sequential or random access
▶ PRO: Simplicity, generality, 

transparency
▶ CON: Storage capacity and 

throughput limited by single 
server

25

n Single virtual file system 
spread over many machines

n Optimized for sequential read 
and local accesses

n PRO: High throughput, high 
capacity

n "CON": Specialized for 
particular types of 
applications

Network File System (NFS) Hadoop Distributed File System (HDFS)
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How data is stored in HDFS

▶ Files are stored as sets of (large) blocks
▶ Default block size: 64 MB (ext4 default is 4kB!)
▶ Blocks are replicated for durability and availability
▶ What are the advantages of this design?

▶ Namespace is managed by a single name node
▶ Actual data transfer is directly between client & data node
▶ Pros and cons of this decision?

26

foo.txt: 3,9,6
bar.data: 2,4

block #2 of 
foo.txt?

9
Read block 9

9

9

9 93

3
3

2
2

24
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The Namenode

▶ State stored in two files: fsimage and edits
▶ fsimage: Snapshot of file system metadata
▶ edits: Changes since last snapshot

▶ Normal operation:
▶ When namenode starts, it reads fsimage and then applies all 

the changes from edits sequentially
▶ Pros and cons of this design?

27

foo.txt: 3,9,6
bar.data: 2,4
blah.txt: 17,18,19,20
xyz.img: 8,5,1,11

Name node fsimage

Created abc.txt
Appended block 21 to blah.txt
Deleted foo.txt
Appended block 22 to blah.txt
Appended block 23 to xyz.img
...

edits
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The Secondary Namenode

▶ What if the state of the namenode is lost?
▶ Data in the file system can no longer be read!

▶ Solution #1: Metadata backups
▶ Namenode can write its metadata to a local disk, and/or to 

a remote NFS mount

▶ Solution #2: Secondary Namenode
▶ Purpose: Periodically merge the edit log with the fsimage

to prevent the log from growing too large
▶ Has a copy of the metadata, which can be used to 

reconstruct the state of the namenode
▶ But: State lags behind somewhat, so data loss is likely if 

the namenode fails

28
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Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution
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Accessing data in HDFS

▶ HDFS implements a separate namespace
▶ Files in HDFS are not visible in the normal file system
▶ Only the blocks and the block metadata are visible
▶ HDFS cannot be (easily) mounted

▶ Some FUSE drivers have been implemented for it
30

[ahae@carbon ~]$ ls -la /tmp/hadoop-ahae/dfs/data/current/
total 209588

drwxrwxr-x 2 ahae ahae     4096 2013-10-08 15:46 .
drwxrwxr-x 5 ahae ahae     4096 2013-10-08 15:39 ..
-rw-rw-r-- 1 ahae ahae 11568995 2013-10-08 15:44 blk_-3562426239750716067

-rw-rw-r-- 1 ahae ahae    90391 2013-10-08 15:44 blk_-3562426239750716067_1020.meta
-rw-rw-r-- 1 ahae ahae        4 2013-10-08 15:40 blk_5467088600876920840

-rw-rw-r-- 1 ahae ahae       11 2013-10-08 15:40 blk_5467088600876920840_1019.meta
-rw-rw-r-- 1 ahae ahae 67108864 2013-10-08 15:44 blk_7080460240917416109
-rw-rw-r-- 1 ahae ahae   524295 2013-10-08 15:44 blk_7080460240917416109_1020.meta

-rw-rw-r-- 1 ahae ahae 67108864 2013-10-08 15:44 blk_-8388309644856805769
-rw-rw-r-- 1 ahae ahae   524295 2013-10-08 15:44 blk_-8388309644856805769_1020.meta

-rw-rw-r-- 1 ahae ahae 67108864 2013-10-08 15:44 blk_-9220415087134372383
-rw-rw-r-- 1 ahae ahae   524295 2013-10-08 15:44 blk_-9220415087134372383_1020.meta
-rw-rw-r-- 1 ahae ahae      158 2013-10-08 15:40 VERSION

[ahae@carbon ~]$
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Accessing data in HDFS

▶ File access is through the hadoop command
▶ Examples:

▶ hadoop fs -put [file] [hdfsPath] Stores a file in HDFS
▶ hadoop fs -ls [hdfsPath] List a directory
▶ hadoop fs -get [hdfsPath] [file] Retrieves a file from HDFS
▶ hadoop fs -rm [hdfsPath] Deletes a file in HDFS
▶ hadoop fs -mkdir [hdfsPath] Makes a directory in HDFS

31

[ahae@carbon ~]$ /usr/local/hadoop/bin/hadoop fs -ls /user/ahae
Found 4 items

-rw-r--r-- 1 ahae supergroup       1366 2013-10-08 15:46 /user/ahae/README.txt
-rw-r--r-- 1 ahae supergroup          0 2013-10-083 15:35 /user/ahae/input
-rw-r--r-- 1 ahae supergroup          0 2013-10-08 15:39 /user/ahae/input2

-rw-r--r-- 1 ahae supergroup  212895587 2013-10-08 15:44 /user/ahae/input3
[ahae@carbon ~]$
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Alternatives to the command line

▶ Getting data in and out of HDFS through the 
command-line interface is a bit cumbersome

▶ Alternatives have been developed:
▶ FUSE file system: Allows HDFS to be mounted under Unix
▶ WebDAV share: Can be mounted as filesystem on many OSes
▶ HTTP: Read access through namenode's embedded web svr
▶ FTP: Standard FTP interface
▶ ...

32
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Accessing HDFS directly from Java

▶ Programs can read/write HDFS files directly
▶ Not needed in MapReduce; I/O is handled by the framework

▶ Files are represented as URIs
▶ Example: hdfs://localhost/user/ahae/example.txt

▶ Access is via the FileSystem API
▶ To get access to the file: FileSystem.get()
▶ For reading, call open() -- returns InputStream
▶ For writing, call create() -- returns OutputStream

33
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What about permissions?

▶ Since 0.16.1, Hadoop has rudimentary 
support for POSIX-style permissions
▶ rwx for users, groups, 'other' -- just like in Unix
▶ 'hadoop fs' has support for chmod, chgrp, chown

▶ But: POSIX model is not a very good fit
▶ Many combinations are meaningless: Files cannot be 

executed, and existing files cannot really be written to

▶ Permissions were not really enforced
▶ Hadoop does not verify whether user's identity is genuine
▶ Useful more to prevent accidental data corruption or casual 

misuse of information

34
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Where are things today?

▶ Since v.20.20x, Hadoop has some security
▶ Kerberos RPC (SASL/GSSAPI)
▶ HTTP SPNEGO authentication for web consoles
▶ HDFS file permissions actually enforced
▶ Various kinds of delegation tokens
▶ Network encryption
▶ For more details, see:

https://issues.apache.org/jira/secure/attachment/12428537/
security-design.pdf

▶ Big changes are coming
▶ Project Rhino (e.g., encrypted data at rest)

35
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Recap: HDFS

▶ HDFS: A specialized distributed file system
▶ Good for large amounts of data, sequential reads
▶ Bad for lots of small files, random access, non-append writes

▶ Architecture: Blocks, namenode, datanodes
▶ File data is broken into large blocks (64MB default)
▶ Blocks are stored & replicated by datanodes
▶ Single namenode manages all the metadata
▶ Secondary namenode: Housekeeping & (some) redundancy

▶ Usage: Special command-line interface
▶ Example: hadoop fs -ls /path/in/hdfs

36
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Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution

37

NEXT



Dimitris Kotzinos

Recap: High-level dataflow

38

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
pu

t d
at

a

Ou
tp

ut
 d

at
a

"The Shuffle"

Intermediate 
(key,value) pairs



Dimitris Kotzinos

Detailed dataflow in Hadoop

39
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Input Format

▶ Defines which input files 
should be read, and how
▶ Defaults provided, e.g., TextInputFormat,

DBInputFormat, KeyValueTextInputFormat...

▶ Defines InputSplits
▶ InputSplits break file into separate tasks
▶ Example: one task for each 64MB block (why?)

▶ Provides a factory for RecordReaders
▶ RecordReaders actually read the file into (key,value) pairs
▶ Default format, TextInputFormat, uses byte offset in file as 

the key, and line as the value
▶ KeyValueInputFormat reads (key,value) pairs from the file 

directly; key is everything up to the first tab character
40
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Combiners

▶ Optional component that can 
be inserted after the mappers
▶ Input: All data emitted by the mappers

on a given node
▶ Output passed to the partitioner

▶ Why is this useful?
▶ Suppose your mapper counts words by emitting (xyz, 1) 

pairs for each word xyz it finds
▶ If a word occurs many times, it is much more efficient to 

pass (xyz, k) to the reducer, than passing k copies of (xyz,1)

41
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Parititoner

▶ Controls which intermediate 
key-value pairs should go 
to which reducer

▶ Defines a partition on the set of KV pairs
▶ Number of partitions is the same as the number of reducers

▶ Default partitioner (HashPartitioner) assigns 
partition based on a hash of the key

42
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Output Format

▶ Counterpart to InputFormat

▶ Controls where output is
stored, and how
▶ Provides a factory for RecordWriter

▶ Several implementations provided
▶ TextOutputFormat (default)
▶ DBOutputFormat
▶ MultipleTextOutputFormat
▶ ...

43
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Recap: Dataflow in Hadoop

▶ Hadoop has many components that are 
usually hidden from the developer

▶ Many of these can be customized:
▶ InputFormat: Defines how input files are read
▶ InputSplit: Defines how data portions are assigned to tasks
▶ RecordReader: Reads actual KV pairs from input files
▶ Combiner: Mini-reduce step on each node, for efficiency
▶ Partitioner: Assigns intermediate KV pairs to reducers
▶ Comparator: Controls how KV pairs are sorted after shuffle

▶ More details: Chapter 7 of your textbook

44
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Plan for today

▶ A brief history of Hadoop
▶ Writing jobs for Hadoop

▶ Mappers, reducers, drivers
▶ Compiling and running a job

▶ Hadoop Distributed File System (HDFS)
▶ Node types; read and write operation
▶ Accessing data in HDFS

▶ Hadoop internals
▶ Dataflow: Input format, partitioner, combiner, ...
▶ Fully distributed mode: Node types, setup
▶ Fault tolerance; speculative execution
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Hadoop daemons

▶ TaskTracker
▶ Runs maps and reduces. One per node.

▶ JobTracker
▶ Accepts jobs; assigns tasks to TaskTrackers

▶ DataNode
▶ Stores HDFS blocks

▶ NameNode
▶ Stores HDFS metadata

▶ SecondaryNameNode
▶ Merges edits file with snapshot; "backup" for NameNode

46

A single node can run 
more than one of these!
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An example configuration

47

JobTracker
NameNode
Secondary NameNode
TaskTracker
DataNode

Small cluster Medium cluster

JobTracker NameNode Secondary
NameNode
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Fault tolerance

▶ What if a node fails during a job?
▶ JobTracker notices that the node's TaskTracker no longer 

responds; re-executes the failed node's tasks

▶ What specifically should be re-executed?
▶ Depends on the phase the job was in
▶ Mapping phase: Re-execute all maps assigned to failed node
▶ Reduce phase: Re-execute all reduces assigned to the node

▶ Is this sufficient?
▶ No! Failed node may also have completed map tasks, and other nodes 

may not have finished copying out the results
▶ Need to re-execute map tasks on the failed node as well!

48
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Speculative execution

▶ What if some tasks are much harder, or some 
nodes much slower, than the others?
▶ Entire job is delayed!

▶ Solution: Speculative execution
▶ If task is almost complete, schedule a few redundant rasks 

on nodes that have nothing else to do
▶ Whichever one finishes first becomes the definitive copy; the 

others' results are discarded to prevent duplicates

49
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Placement and locality

▶ Which of the replicated blocks should be read?
▶ If possible, pick the closest one (reduces network load)
▶ Distance metric takes into account: Nodes, racks, datacenters

▶ Where should the replicas be put?
▶ Tradeoff between fault tolerance and locality/performance

50

Rack 1 Rack 2 Rack 1 Rack 2

Datacenter A Datacenter B

Block
replicas

Task
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Recap: Distributed mode

▶ Five important daemons:
▶ MapReduce daemons: JobTracker, TaskTracker
▶ HDFS daemons: DataNode, NameNode, Secondary NameN.
▶ Workers run TaskTracker+DataNode

▶ Special features:
▶ Transparently re-executes jobs if nodes fail
▶ Speculatively executes jobs to limit impact of stragglers
▶ Rack-aware placement to keep traffic local

51
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Big Data Computations on the cloud

52
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Plan for today

▶ Introduction
▶ Census example

▶ MapReduce architecture
▶ Data flow
▶ Execution flow
▶ Fault tolerance etc. 
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Analogy: National census

▶ Suppose we have 
10,000 employees, 
whose job is to collate 
census forms and 
to determine how 
many people live in 
each city

▶ How would you 
organize this task?
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National census "data flow"
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Making things more complicated

▶ Suppose people take vacations, get sick, work 
at different rates

▶ Suppose some forms are incorrectly filled out 
and require corrections or need to be thrown 
away

▶ What if the supervisor gets sick?
▶ How big should the stacks be?
▶ How do we monitor progress? 
▶ ...
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A bit of introspection

▶ What is the main challenge?
▶ Are the individual tasks complicated? 
▶ If not, what makes this so challenging?

▶ How resilient is our solution?

▶ How well does it balance work across 
employees?
▶ What factors affect this?

▶ How general is the set of techniques?
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I don't want to deal with all this!!!

▶ Wouldn't it be nice if there were some system 
that took care of all these details for you?

▶ Ideally, you'd just tell the system what needs 
to be done

▶ That's the MapReduce framework.

58



Dimitris Kotzinos

Abstracting into a digital data flow
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Abstracting once more

▶ There are two kinds of workers:
▶ Those that take input data items and produce output items 

for the “stacks”
▶ Those that take the stacks and aggregate the results to 

produce outputs on a per-stack basis

▶ We’ll call these:
▶ map:  takes (item_key, value), produces one or more 

(stack_key, value’) pairs
▶ reduce:  takes (stack_key, {set of value’}), produces one or 

more output results – typically (stack_key, agg_value)
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Why MapReduce?

▶ Scenario:
▶ You have a huge amount of data, e.g., all the Google 

searches of the last three years
▶ You would like to perform a computation on the data, e.g., 

find out which search terms were the most popular

▶ How would you do it?

▶ Analogy to the census example:
▶ The computation isn't necessarily difficult, but parallelizing 

and distributing it, as well as handling faults, is challenging

▶ Idea: A programming language!
▶ Write a simple program to express the (simple) computation, 

and let the language runtime do all the hard work
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Plan for today

▶ Introduction
▶ Census example

▶ MapReduce architecture
▶ Data flow
▶ Execution flow
▶ Fault tolerance etc. 
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What is MapReduce?

▶ A famous distributed programming model
▶ In many circles, considered the key building block for 

much of Google’s data analysis
▶ A programming language built on it:  Sawzall,

http://labs.google.com/papers/sawzall.html
▶ … Sawzall has become one of the most widely used programming languages at 

Google.  … [O]n one dedicated Workqueue cluster with 1500 Xeon CPUs, there were 
32,580 Sawzall jobs launched, using an average of 220 machines each. While running 
those jobs, 18,636 failures occurred (application failure, network outage, system 
crash, etc.) that triggered rerunning some portion of the job. The jobs read a total of 
3.2x1015 bytes of data (2.8PB) and wrote 9.9x1012 bytes (9.3TB).

▶ Other similar languages:  Yahoo’s Pig Latin and Pig; Microsoft’s 
Dryad

▶ Cloned in open source: Hadoop,
http://hadoop.apache.org/
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The MapReduce programming model

▶ Simple distributed functional programming primitives
▶ Modeled after Lisp primitives:

▶ map (apply function to all items in a collection) and 
▶ reduce (apply function to set of items with a common key)

▶ We start with:
▶ A user-defined function to be applied to all data,
map: (key,value) à (key, value)

▶ Another user-specified operation 
reduce: (key, {set of values}) à result

▶ A set of n nodes, each with data
▶ All nodes run map on all of their data, producing new 

data with keys
▶ This data is collected by key, then shuffled, and finally reduced
▶ Dataflow is through temp files on GFS
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Simple example: Word count

▶ Goal: Given a set of documents, count how 
often each word occurs
▶ Input: Key-value pairs (document:lineNumber, text)
▶ Output: Key-value pairs (word, #occurrences)
▶ What should be the intermediate key-value pairs?

map(String key, String value) {
// key: document name, line no
// value: contents of line

}

reduce(String key, Iterator values) {

}

for each word w in value:
emit(w, "1")

// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
emit(key, result)
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Simple example: Word count
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MapReduce dataflow
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More examples

▶ Distributed grep – all lines matching a pattern
▶ Map: filter by pattern
▶ Reduce: output set

▶ Count URL access frequency
▶ Map: output each URL as key, with count 1
▶ Reduce: sum the counts

▶ Reverse web-link graph
▶ Map: output (target,source) pairs when link to target 

found in souce
▶ Reduce: concatenates values and emits (target,list(source))

▶ Inverted index
▶ Map: Emits (word,documentID)
▶ Reduce: Combines these into (word,list(documentID))
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Common mistakes to avoid

▶ Mapper and reducer should be stateless
▶ Don't use static variables - after map +
reduce return, they should remember 
nothing about the processed data!

▶ Reason: No guarantees about which 
key-value pairs will be processed by 
which workers!

▶ Don't try to do your own I/O!
▶ Don't try to read from, or write to, 

files in the file system
▶ The MapReduce framework does all 

the I/O for you:
▶ All the incoming data will be fed as arguments to map and reduce
▶ Any data your functions produce should be output via emit
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HashMap h = new HashMap();
map(key, value) {
if (h.contains(key)) {
h.add(key,value);
emit(key, "X");

}
} Wrong!

map(key, value) {
File foo = 
new File("xyz.txt");

while (true) {
s = foo.readLine();  
...

}
} Wrong!



Dimitris Kotzinos

More common mistakes to avoid

▶ Mapper must not map too much data to the 
same key
▶ In particular, don't map everything to the same key!!
▶ Otherwise the reduce worker will be overwhelmed!
▶ It's okay if some reduce workers have more work than others

▶ Example: In WordCount, the reduce worker that works on the key 'and' 
has a lot more work than the reduce worker that works on 'syzygy'.
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map(key, value) {
emit("FOO", key + " " + value);

}

reduce(key, value[]) {
/* do some computation on
all the values */

}

Wrong!



Dimitris Kotzinos

Designing MapReduce algorithms

▶ Key decision: What should be done by map, 
and what by reduce?
▶ map can do something to each individual key-value pair, but 

it can't look at other key-value pairs
▶ Example: Filtering out key-value pairs we don't need

▶ map can emit more than one intermediate key-value pair for 
each incoming key-value pair

▶ Example: Incoming data is text, map produces (word,1) for each word
▶ reduce can aggregate data; it can look at multiple values, as 

long as map has mapped them to the same (intermediate) key
▶ Example: Count the number of words, add up the total cost, ...

▶ Need to get the intermediate format right!
▶ If reduce needs to look at several values together, map

must emit them using the same key!
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More details on the MapReduce data flow
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Some additional details

▶ To make this work, we need a few more parts…

▶ The file system (distributed across all nodes):
▶ Stores the inputs, outputs, and temporary results

▶ The driver program (executes on one node):
▶ Specifies where to find the inputs, the outputs
▶ Specifies what mapper and reducer to use
▶ Can customize behavior of the execution

▶ The runtime system (controls nodes):
▶ Supervises the execution of tasks
▶ Esp. JobTracker
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Some details

▶ Fewer computation partitions than data partitions
▶ All data is accessible via a distributed filesystem with 

replication
▶ Worker nodes produce data in key order (makes it easy to 

merge)
▶ The master is responsible for scheduling, keeping all 

nodes busy
▶ The master knows how many data partitions there are, 

which have completed – atomic commits to disk
▶ Locality: Master tries to do work on nodes that 

have replicas of the data
▶ Master can deal with stragglers (slow machines) by 

re-executing their tasks somewhere else
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What if a worker crashes?

▶ We rely on the file system being shared 
across all the nodes

▶ Two types of (crash) faults:
▶ Node wrote its output and then crashed

▶ Here, the file system is likely to have a copy of the complete output
▶ Node crashed before finishing its output

▶ The JobTracker sees that the job isn’t making progress, and restarts 
the job elsewhere on the system

▶ (Of course, we have fewer nodes to do 
work…)

▶ But what if the master crashes?
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Other challenges

▶ Locality
▶ Try to schedule map task on machine that already has data

▶ Task granularity
▶ How many map tasks? How many reduce tasks?

▶ Dealing with stragglers
▶ Schedule some backup tasks

▶ Saving bandwidth
▶ E.g., with combiners

▶ Handling bad records
▶ "Last gasp" packet with current sequence number
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Scale and MapReduce

▶ From a particular Google paper on a language built 
over MapReduce:
▶ … Sawzall has become one of the most widely used programming 

languages at Google.  … 
[O]n one dedicated Workqueue cluster with 1500 Xeon CPUs, there 
were 32,580 Sawzall jobs launched, using an average of 220 
machines each. 
While running those jobs, 18,636 failures occurred (application 
failure, network outage, system crash, etc.) that triggered 
rerunning some portion of the job. The jobs read a total of 
3.2x1015 bytes of data (2.8PB) and wrote 9.9x1012 bytes (9.3TB).
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Recap: MapReduce dataflow
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Recap: MapReduce
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map(key    , value         )
{

}

reduce(rkey       , rvalues          )
{

}

String[] words = value.split(" ");
for each w in words
emit(w, 1);

Integer result = 0;
foreach v in rvalues
result = result + v;

emit(rkey, v);

:URL :Document

:String :Integer[]

reduce gets all the 
intermediate values
with the same rkey

These types can be (and often are)
different from the ones in map()

Produces intermediate
key-value pairs that

are sent to the reducer

Any key-value pairs emitted
by the reducer are added to 

the final output

These types depend on 
the input data

Both map() and reduce() are
stateless: Can't have a 'global

variable that is preserved 
across invocations!
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Plan for today

▶ Single-pass algorithms in MapReduce
▶ Filtering algorithms
▶ Aggregation algortihms
▶ Intersections and joins
▶ Partial Cartesian products
▶ Sorting

80

NEXT



Dimitris Kotzinos

The basic idea

▶ Let’s consider single-pass algorithms
▶ Need to take the algorithm and break it into 

filter/collect/aggregate steps
▶ Filter/collect becomes part of the map function
▶ Collect/aggregate becomes part of the reduce function

▶ Note that sometimes we may need multiple 
map / reduce stages – chains of maps and 
reduces

▶ Let’s see some examples
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Filtering algorithms

▶ Goal: Find lines/files/tuples with a particular 
characteristic

▶ Examples:
▶ grep Web logs for requests to *.upenn.edu/*
▶ find in the Web logs the hostnames accessed by 192.168.2.1
▶ locate all the files that contain the words 'Apple' and 'Jobs'

▶ Generally: map does most of the work, 
reduce may simply be the identity
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Aggregation algorithms

▶ Goal: Compute the maximum, the sum, the 
average, ..., over a set of values

▶ Examples:
▶ Count the number of requests to *.upenn.edu/*
▶ Find the most popular domain
▶ Average the number of requests per page per Web site

▶ Often: map may be simple or the identity
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A more complex example

▶ Goal: Billing for a CDN like Amazon CloudFront
▶ Input: Log files from the edge servers. Two files per domain:

▶ access_log-www.foo.com-20111006.txt: HTTP accesses
▶ ssl_access_log-www.foo.com-20111006.txt: HTTPS accesses
▶ Example line: 
158.130.53.72 - - [06/Oct/2011:16:30:38 -0400] "GET 
/largeFile.ISO HTTP/1.1" 200 8130928734 "-" 
"Mozilla/5.0 (compatible; MSIE 5.01; Win2000)"

▶ Mapper receives (filename,line) tuples
▶ Billing policy (simplified):

▶ Billing is based on a mix of request count and data traffic (why?)
▶ 10,000 HTTP requests cost $0.0075
▶ 10,000 HTTPS requests cost $0.0100
▶ One GB of traffic costs $0.12

▶ Desired output is a list of (domain, grandTotal) tuples
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Intersections and joins

▶ Goal: Intersect multiple different inputs on 
some shared values
▶ Values can be equal, or meet a certain predicate

▶ Examples:
▶ Find all documents with the words “data” and “centric” given 

an inverted index
▶ Find all professors and students in common courses and 

return the pairs <professor,student> for those cases
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Partial Cartesian products

▶ Goal: Find some complex relationship, e.g., 
based on pairwise distance

▶ Examples:
▶ Find all pairs of sites within 100m of each other

▶ Generally hard to parallelize
▶ But may be possible if we can divide the input into bins or 

tiles, or link it to some sort of landmark
▶ Overlap the tiles? (how does this scale?)
▶ Generate landmarks using clustering?
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Sorting

▶ Goal: Sort input

▶ Examples:
▶ Return all the domains covered by Google's index and the 

number of pages in each, ordered by the number of pages

▶ The programming model does not support 
this per se, but the implementations do
▶ Let’s take a look at what happens in the Shuffle stage
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Plan for today

▶ Single-pass algorithms in MapReduce
▶ Filtering algorithms
▶ Aggregation algortihms
▶ Intersections and joins
▶ Partial Cartesian products
▶ Sorting
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The shuffle stage revisited
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Shuffle as a sorting mechanism

▶ We can exploit the per-node sorting operation 
done by the Shuffle stage
▶ If we have a single reducer, we will get sorted output
▶ If we have multiple reducers, we can get partly sorted 

output (or better – consider an order-preserving hash)
▶ Note it’s quite easy to write a last-pass file that merges all of the part-

r-000x files
▶ We can use a heap to do this

▶ Let’s see an example!
▶ Return all the domains covered by Google's index and the 

number of pages in each, ordered by the number of pages

90



Dimitris Kotzinos

Strengths and weaknesses

▶ What problems can you solve well with 
MapReduce?
▶ ... in a single pass?
▶ ... in multiple passes?

▶ Are there problems you cannot solve 
efficiently with MapReduce?

▶ Are there problems it can't solve at all?

▶ How does it compare to other ways of doing 
large-scale data analysis?
▶ Is MapReduce always the fastest/most efficient way?
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Recap: MapReduce algorithms

▶ A variety of different tasks can be expressed 
as a single-pass MapReduce program
▶ Filtering and aggregation + combinations of the two
▶ Joins on shared elements
▶ If we allow multiple MapReduce passes or even fixpoint 

iteration, we can do even more (see later)

▶ But it does not work for all tasks
▶ Partial Cartesian product not an ideal fit, but can be made to 

work with binning and tiling
▶ Sorting doesn't work at all, at least in the abstract model, 

but the implementations support it
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Big Data Storage on the cloud
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Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB
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Complex service, simple storage

▶ PC users see a rich, powerful interface
▶ Hierarchical namespace (directories); can move, rename, 

append to, truncate, (de)compress, view, delete files, ...

▶ But the actual storage device is very simple
▶ HDD only knows how to read and write fixed-size data blocks

▶ Translation done by the operating system
95

Operating system
Fixed-size blocks
- read
- write

Variable-size files
- read, write, append
- move, rename
- lock, unlock
- ...
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Analogy to cloud storage

▶ Many cloud services have a similar structure
▶ Users see a rich interface (shopping carts, product categories, 

searchable index, recommendations, ...)

▶ But the actual storage service is very simple
▶ Read/write 'blocks', similar to a giant hard disk

▶ Translation done by the web service
96

Web service
Key/value store
- read, write
- delete

Shopping carts
Friend lists
User accounts
Profiles
...
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Key-value stores

▶ The key-value store (KVS) is a simple 
abstraction for managing persistent state
▶ Data is organized as (key,value) pairs
▶ Only three basic operations:

▶ PUT(key, value)
▶ GET(key) → value
▶ Delete(key)

97

(windows,          )

(bob, bschmitt@foo.com)
(gettysburg, "Four score and seven years ago...")
(29ck2dxa1, 0128ckso1$9#*!!8349e)

Keys Values



Dimitris Kotzinos

Examples of KVS

▶ Where have you seen this concept before?

▶ Conventional examples outside the cloud:
▶ In-memory associative arrays and hash tables – limited to a 

single application, only persistent until program ends
▶ On-disk indices (like BerkeleyDB)
▶ "Inverted indices" behind search engines
▶ Database management systems – multiple KVSs++
▶ Distributed hashtables (e.g., on top of Chord/Pastry)
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Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB
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Supporting an Internet service with a KVS

▶ We’ll do this through a central server, e.g., a 
Web or application server

▶ Two main issues:
1. There may be multiple concurrent 

requests from different clients
▶ These might be GETs, PUTs, DELETEs, etc.

2. These requests may come from different 
parts of the network, with message propagation delays

▶ It takes a while for a request to make it to the server!
▶ We’ll have to handle requests in the order received (why?)
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Managing concurrency in a KVS

▶ What happens if we do multiple GET 
operations in parallel?
▶ ... over different keys?
▶ ... over the same key?

▶ What if we do multiple PUT operations in 
parallel? or a GET and a PUT?

▶ What is the unit of protection (concurrency 
control) that is necessary here?
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Concurrency control

▶ Most systems use locks on individual items
▶ Each requestor asks for the lock
▶ A lock manager processes these requests (typically 

in FIFO order) as follows:
▶ Lock manager grants the lock to a requestor
▶ Requestor makes modifications
▶ Then releases the lock when it’s done  

▶ There are several kinds of locks, and several 
other alternatives 
▶ Example: S/X lock
▶ See CIS 455 for more details
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Limitations of per-key concurrency control

▶ Suppose I want to transfer credits 
from my WoW account to my friend’s?
▶ … while someone else is doing a GET

on my (and her) credit amounts to see if 
they want to trade?

▶ This is where one needs a database 
management system (DBMS) or transaction 
processing manager (app server)
▶ Allows for “locking” at a higher level, across keys and 

possibly even systems (see CIS 330 for more details)

▶ Could you implement higher-level locks within 
the KVS? If so, how?
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Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB
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Key-Multi-Value stores

▶ What if I want to have multiple values for 
the same key in a KVS?
▶ Example: Multiple images with the same search keyword

▶ Option 1: Make the “value” a collection object 
like a set
▶ Then PUT really becomes GET → add → PUT

▶ Option 2: Allow the KVS to store multiple 
values per key
▶ Requires a cursor that scrolls through the matches
▶ Similar to Java's notion of an iterator
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Accessing data

▶ How can we retrieve all the values a particular 
key maps to?
▶ There could be a very large number of them 

(remember HW1MS1!)

▶ Idea: Use a cursor
▶ Follows the following programming pattern:
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cursor = kvs.getFirstMatch(key);

while (cursor != null) {
value = cursor.getValue();
cursor = kvs.getNextMatch(key, cursor);

}

with a cursor
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Recap: Key-value stores

▶ KVS: A simple abstraction for managing 
persistent data state
▶ Interface consists only of PUT and GET (+possibly DELETE)
▶ Some variants allow multiple values per key
▶ Examples: Distributed hashtables, associative arrays, ...
▶ Extremely scalable implementations exist

▶ Challenge: Concurrency control
▶ From the perspective of the KVS, values for different keys 

are independent
▶ Difficult to change multiple values atomically
▶ Some applications may require higher-level locking
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Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB
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Key-Value stores on the Cloud

▶ Many situations need hosting of large data sets
▶ Examples: Amazon catalog, eBay listings, Facebook pages, …

▶ Ideal: Abstraction of a 'big disk in the clouds', 
which would have:
▶ Perfect durability – nothing would ever disappear in a crash
▶ 100% availability – we could always get to the service
▶ Zero latency from anywhere on earth – no delays!
▶ Minimal bandwidth utilization – we only send across the 

network what we absolutely need
▶ Isolation under concurrent updates – make sure data stays 

consistent
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The inconveniences of the real world
▶ Why isn't this feasible?

▶ The “cloud” exists over a physical network
▶ Communication takes time, esp. across the globe
▶ Bandwidth is limited, both on the backbone and endpoint

▶ The “cloud” has imperfect hardware
▶ Hard disks crash
▶ Servers crash
▶ Software has bugs

▶ Can you map these to the previous desiderata?
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Finding the right tradeoff

▶ In practice, we can't have everything
▶ ... but most applications don't really need 'everything'!

▶ Some observations:
1. Read-only (or read-mostly) data is easiest to support

▶ Replicate it everywhere!  No concurrency issues!
▶ But only some kinds of data fit this pattern – examples?

2. Granularity matters: “Few large-object” tasks generally 
tolerate longer latencies than “many small-object” tasks
▶ Fewer requests, often more processing at the client
▶ But it’s much more expensive to replicate or to update!

3. Maybe it makes sense to develop separate solutions for large 
read-mostly objects vs. small read-write objects!
▶ Different requirements → different technical solutions
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Specialized KVS

▶ Cloud KVS are often specialized for a 
particular tradeoff or usage scenario

▶ Example: Amazon’s solutions
▶ Simple Storage Service (S3):

▶ large objects – files, virtual machines, etc.
▶ assumes objects change infrequently
▶ objects are opaque to the storage system

▶ SimpleDB:
▶ small objects – Java objects, records, etc.
▶ generally updated more frequently; greater need for consistency
▶ generally multiple attributes or properties, which are exposed to 

the storage system
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Recap: KVS on the cloud

▶ Ideally, we would simply like the abstraction 
of a 'big disk in the cloud'
▶ Perfect durability, availability, consistency, throughput, ...

▶ Practical constraints require compromises
▶ Propagation delay, unreliable hardware/software, ...

▶ Hence, we need to make the right tradeoff
▶ For example, specialize KVS for particular workloads
▶ No one-size-fits-all solution; different solutions are useful 

in different situations
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Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB
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Big Objects: Amazon S3

▶ S3 = Simple Storage System
▶ Think roughly of an Internet file system

▶ Stores large objects (=values) that may have 
access permissions
▶ Used in “cloud backup” services like Jungle Disk
▶ Used to distribute software packages
▶ Used internally by Amazon to store virtual machines

▶ “Up to 99.99999999% durability, 99.99% 
availability” (“ten nines” and “four nines”)

115



Dimitris Kotzinos

S3: Key concepts

▶ S3 consists of:
▶ objects – named items stored in S3
▶ buckets of objects – think of these as 

volumes in a filesystem
▶ the console includes a notion of folders, 

but these are not intrinsic to S3

▶ Names within a bucket must uniquely identify 
a single object 
▶ i.e., keys must be unique
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S3: Keys and objects

▶ What can we use as keys?
▶ Keys can be any string

▶ What can we use as objects?
▶ Objects can be from 1 byte to 5 TB, any format
▶ Number of objects is 'unlimited'

▶ Where can objects be stored?
▶ Can be assigned to specific geographic regions (Washington, 

Virginia, California, Ireland, Singapore, Tokyo, ...)
▶ Why is this important? (name at least four reasons!)
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S3: Different ways to access objects

▶ Objects in S3 can be accessed
▶ ... via REST or SOAP
▶ ... via BitTorrent
▶ ... over the web: http://s3.amazonaws.com/bucket/key
▶ Web Services use HTTP (the Web browser protocol over 

sockets) and XML to send requests and data
▶ AWS Console also enables configuration

▶ We’ll mostly be using Java(script) libraries 
to interact with S3
▶ You’ll just call them as normal functions, but they will 

open and close sockets as necessary
▶ http://bitbucket.org/jmurty/jets3t/wiki/Home
▶ http://aws.amazon.com/sdkfornodejs/
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S3: Access permissions

▶ Permissions are assigned through 
Access Control Lists (ACLs)
▶ Essentially, a list of users/groups à permissions
▶ Bucket permissions are inherited by objects unless 

overridden at the object level

▶ What can you control?
▶ Can be at the level of buckets or individual objects
▶ Available rights: Read, write, read ACL, write ACL
▶ Possible grantees: Everyone, authenticated users, specific 

users (by AWS account email address)
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S3: Uploading an object

▶ Step 1: Hit 'upload' in management console
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S3: Uploading an object

▶ Step 2: Select files
▶ Step 3: Set metadata (or accept default)
▶ Step 4: Set permissions (or make public)
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S3: Current pricing and usage
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S3: Bucket operations

▶ Create bucket
(optionally versioned; 
see later)

▶ Delete bucket

▶ List all keys in bucket (may not be 100% up to date)

▶ Modify bucket permissions

123

Source: Amazon S3 User’s Guide



Dimitris Kotzinos

S3: Object operations

▶ PUT object in bucket
▶ GET object from bucket
▶ DELETE object from bucket
▶ Modify object permissions

▶ The key issue: How do we manage 
concurrent updates?
▶ Will I see objects you delete? the latest version? etc.
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S3: Consistency models

▶ Consistency model depends on the region
▶ US West, EU, Asia Pacific, S. America: 

read-after-write consistency for PUTs of new objects and 
eventual consistency for overwrite PUTs and DELETEs

▶ S3 buckets in the US Standard Region: eventual consistency

▶ Read-after-write consistency:
▶ Each read or write operation becomes effective at some 

point between its start time and its completion time
▶ Reads return the value of the last effective write
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S3: Versioning

▶ S3 handles consistency through versioning
rather than locking
▶ The idea: every bucket + key maps to a list of versions

▶ [bucket+key] à [object v1] [object v2] [object v3] …
▶ Each time we PUT an object, it gets a new version

▶ The last-received PUT overwrites any previous ones!
▶ When we GET:

▶ An unversioned request likely receives the last version – but this is not 
guaranteed depending on propagation delays

▶ A request for bucket + key + version uniquely maps to a single object!

▶ Versioning can be enabled for each bucket
▶ Why would you (not) want versioning?
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Recap: Amazon S3

▶ A key-value store for large objects
▶ Buckets, keys, objects, folders
▶ Various ways to access objects, e.g., HTTP and BitTorrent

▶ Provides eventual consistency 
▶ +/- a few details that depend on the region

▶ Supports versioning and access control
▶ Access control is based on ACLs
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Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB

128

NEXT



Dimitris Kotzinos

What is Amazon SimpleDB?

▶ A highly scalable, non-relational data store
▶ Despite its name, not really a database
▶ Stronger consistency guarantees than S3
▶ Highly scalable; built-in replication; automatic indexing
▶ No 'real' transactions, just a conditional put/delete
▶ No 'real' relations, just a fairly basic select
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SimpleDB: Data model

▶ Somewhat analogous to a spreadsheet:
▶ Domains: Entire 'tables'; like buckets
▶ Items: Names with attribute-multivalue sets

▶ For example, an item could have more than one street address

▶ It is possible to add attributes later
▶ No pre-defined schema
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Customer
ID

First 
name

Last
name

Street 
address

City State Zip Email

123 Bob Smith 123 Main St Springfield MO 65801

456 James Johnson 456 Front St Seattle WA 98104 james@foo.com
Items

Name
(key) Attributes (key-multivalue)
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SimpleDB: Basic operations

▶ ListDomains
▶ CreateDomain, DeleteDomain
▶ DomainMetadata

▶ PutAttributes
▶ Also atomic BatchPutAttributes – all must succeed

▶ DeleteAttributes
▶ GetAttributes

▶ Select (like an SQL query)
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SimpleDB: PUT and GET

▶ PutAttributes has a very simple model:
▶ Specify the domain and the item name
▶ [key] à [list of name/value pairs], where we list 

Attribute.1.Name, Attribute.1.Value, etc.
▶ Each Attribute.X has an optional Replace flag (Replace = 0 

means add another value)

▶ GetAttributes 
▶ Specify the domain and the item name + optionally attribute
▶ Can choose whether the read should be consistent or not

▶ What are the advantages of each choice?
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SimpleDB: Conditional Put

▶ SimpleDB also supports a conditional put
▶ Item is updated only if the existing value of an attribute 

matches the value you specify; otherwise update is rejected

▶ Can we use this to guarantee consistency?
▶ Idea: implement a version number, e.g., like this:
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do {
List<Attributes> attribs = kvs.getAttributesFor(key);
... update the attribute values as we like ...
retCode = kvs.conditionalPut(key, attribs, 

(“version”, attribs.get(“version”)));
} while (retcode == ErrorCode.ConditionalCheckFailed);



Dimitris Kotzinos

SimpleDB: Select

▶ A very simple “query” interface based on 
SQL syntax
▶ SELECT output_list FROM domain_name WHERE expression 

[sort expression] [limit spec]
▶ Example: "select * from books where author like 'Tan%' and 

price <= 55.90 and year is not null order by title desc limit 50"
▶ Can choose whether or not read should be consistent
▶ Supports a cursor
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Alternatives to SimpleDB

▶ There is a similar service to SimpleDB
underneath most major “cloud” companies’ 
infrastructure
▶ Google calls theirs BigTable
▶ Yahoo’s is called PNUTS
▶ See reading list at the end

▶ All consist of items with a variable set of 
attribute-value pairs
▶ More flexible than a relational DBMS table
▶ But don’t support full-fledged transactions
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Recap: Amazon SimpleDB

▶ A scalable, non-relational data store
▶ Domains, items, keys, values
▶ Stronger consistency than S3
▶ No pre-defined schema
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Plan for today

▶ Key-value stores (KVS)
▶ Basic concept; operations
▶ Examples of KVS
▶ KVS and concurrency
▶ Key-multi-value stores; cursors

▶ Key-value stores in the Cloud
▶ Challenges
▶ Specialized KVS

▶ Two implementations
▶ Amazon S3
▶ Amazon SimpleDB
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Where could we go beyond this?

▶ KVSs present one of the simplest data represen-
tations: key + one or more objects/properties

▶ Some alternatives:
▶ Relational databases represent data as interlinked tables

(in essence, a limited form of a graph)
▶ Hierarchical storage systems represent data as nested 

entities
▶ More general graph storage might represent entire graph 

structures with links
▶ All are implementable over a KVS

▶ But all allow higher level requests (e.g., paths), and might 
optimize for this

▶ Example: I know that the customer always asks for images related to 
patients’ records, so maybe we should put the two in the same place
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Summary: Cloud Key/Value Stores

▶ Attempt to provide very high durability, 
availability in a persistent, geographically 
distributed storage system

▶ Need to choose compromises due to 
limitations of communications, hardware, 
software
▶ Large, seldom-changing objects – eventual consistency and 

versioned model in S3
▶ Small, more frequently changing objects – lower-latency 

response, conditional updates in SimpleDB

▶ Both are useful in different situations
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Further reading
▶ A. Rowstron and P. Druschel: "Storage management and caching in 

PAST, a large-scale, persistent peer-to-peer storage utility" (SOSP'01)
▶ http://www.research.microsoft.com/~antr/PAST/past-sosp.pdf

▶ F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. 
Chandra, A. Fikes, and R. Gruber: "Bigtable: A Distributed Storage 
System for Structured Data" (OSDI'06)
▶ labs.google.com/papers/bigtable-osdi06.pdf

▶ G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-man, A. 
Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels: "Dynamo: 
Amazon's Highly Available Key-Value Store" (SOSP'07)
▶ http://dl.acm.org/citation.cfm?id=1294281

▶ B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, 
H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni: "PNUTS: Yahoo!'s 
Hosted Data Serving Platform" (PVLDB'08)
▶ http://infolab.stanford.edu/~usriv/papers/pnuts.pdf

▶ H. Lim, B. Fan, D. Andersen, and M. Kaminsky: "SILT: A Memory-
Efficient, High-Performance Key-Value Store" (SOSP'11)
▶ http://www.cs.cmu.edu/~dga/papers/silt-sosp2011.pdf
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Slides adapted (under permission) from
Andreas Haeberlen
(NETS 212: Scalable and Cloud Computing)
CIS Department, Penn-State University
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Class projects
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Big Data in ???

▶ Pick a subject in groups of 2 (online at the 
class website starting from tomorrow):
▶ Astronomy
▶ Energy
▶ Bioinformatics
▶ Cities
▶ Healthcare

▶ How to pick:
▶ Send an e-mail to: Dan.Vodislav@u-cergy.fr
▶ FIFO
▶ Send 3 choices ordered
▶ By Wednesday 04/02 noon
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What is expected?

▶ A report of around 5 to 6 pages
▶ A presentation of 15 min + time for questions
▶ Report and Presentation Language can be 

English or French

▶ Make sure that you understood the problem 
correctly

▶ Don’t focus on technical details; add 
references if needed

▶ Try to collect/add additional information
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Report structure

Big Data and Healthcare
▶ Introduction

▶ Set the context
▶ Describe the problem
▶ Identify sources of big data

▶ Big Data in Healthcare
▶ Types of data
▶ Properties of data (size, velocity, variety, etc.)
▶ Open Data
▶ Linked Data (models, ontologies, etc.)
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Report structure

▶ Methods Used to Process Big Data
▶ Methods to collect data
▶ Mining methods
▶ Processing methods
▶ Analytics
▶ Privacy/Trust concerns

▶ Infrastructure to process Big Data
▶ Centralized / distributed
▶ Cloud computing
▶ Public / private processing

▶ Conclusions
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