Information streams on the web

Dan VODISLAV

CY Cergy Paris Université Master Recherche M2 SIC

Databases and streams

- Data streams
 - Data arriving in streams, with temporal stamps
 - E.g. stock quotes, news, sensor data (position, temperature, ...), social network messages, etc.
- What changes relative to classical databases?
 - One may see each data item as a new line in a database table
 - Arrival of a new item = insertion into the table
- ... but
 - One cannot store everything
 - Need to react on the arrival of a new item
 - Time plays a particular role
 - At the data level: time stamp, item order
 - At the event level: moment when a new item arrives

Why stream processing?

- Volume of data
 - Impossible to store everything \rightarrow Big Data
- Frequent production of new content
 - Reduce the delay between content production and consumption → react on the arrival of a new item
- Many datas are naturally produced as streams
 - Sensors, stock quotes, news headlines, ...
 - Applications for monitoring, surveillance, watching
- Accelerated processing
 - On-the-fly processing, filtering based
 - Reduced need for (slow) access to stored data

Stream processing approaches

- Two extreme approaches
 - Store everything (static)
 - Every new arrived item is stored
 - Static (snapshot) query on the stored data
 - Continuous processing (dynamic)
 - No storage
 - Continuous queries
- Intermediary approaches may be imagined
 - Store everything, but trigger snapshot queries on the arrival of new data
 - E.g. A snapshot query every N new items
 - Continuous processing, but accessing stored data
 - E.g. Filter the new items on a criteria based on stored data
- Stream types
 - Data streams: items = structured data
 - Information streams: items = text

- Classical queries: data + queries at different moments
 - Processing done at query time, on current data
- Continuous queries: query + data at different moments
 - Processing done each time new data arrives
- Specificities of continuous queries
 - Number of results undetermined
 - No access to the whole data
 - Current item + possibly some older items stored by the system
 - Results produced only on input events (arrival of an item)
 - Generally less complex than classical queries
- Continuous query = *subscription*
 - A result \rightarrow *notification*
- General model Input streams Input streams Continuous Output stream

Windows on streams

- Window = finite subsequence of stream items
 - Preserve the order of the input items

Inherent to stream processing

- Storage: actually, we store windows on streams (streams are unbounded)
- Continuous queries: necessary for expressing joins between streams
- Specific operations on streams: *aggregation* on windows
 E.g.. The average of the last 10 days stock quotes
- Window types
 - *Sliding*: determined by the current moment
 - On duration: the items of the last *n* time units (hours, days, etc.)
 - On the number of items: the last *n* items
 - Condition based: determined by begin/end conditions
 - E.g. Starts when the quote becomes smaller than 40 \$, ends by the end of the day
 - Tumbling: partition items in a fixed way (by day, week, etc.)

Page 5

- Streams of text messages
 - Web syndication channels
 - Social network messages

• Web syndication

- New information published on a communication channel
- Channel \rightarrow content periodically updated by the server \rightarrow information stream
- Users subscribe to channels

• RSS (Rich Site Summary, Really Simple Syndication)

- XML format for information publishing on the web
- Publication by updating an XML file that contains the most recent items
 - Updated XML file \rightarrow information stream

RSS example

xml version='1.0' encoding='UTF-8' ? <rss version="2.0"> <channel> <title>Le Monde.fr : Actualités a la une</title> <link/>http ://www.lemonde.fr <language>en</language> <copyright>Copyright Le Monde.fr</copyright> <pubdate>Fri, 11 Apr 2008 13 :36 :10 GMT</pubdate></channel></rss>
<item> <title>Faute de "réponses concrètes", la FIDL appelle a une nouvelle grève mardi</title> <ti>title>Faute de "réponses concrètes", la FIDL appelle a une nouvelle grève mardi <ti><!--</td--></ti></ti></item>
<item> <title>Le Conseil d'Etat consacre le secret professionnel des avocats</title> <link/>http ://rss.feedsportal.com/c/205/f/3050/s/e2301c/story01.htm <description>La haute juridiction administrative a annulé partiellement, jeudi 10 avril, le décret d'application de la deuxième directive européenne contre le blanchiment des capitaux.</description> <pubdate>Fri, 11 Apr 2008 13 :10 :44 GMT</pubdate> </item>

Publish-subscribe systems

- An item published by a source may interest several queries
 - The index allows efficiently targeting the queries for notification

Page 9

Example of index

- Boolean text queries
 - Common case: conjunctive queries = set of keywords
 - Goal: find the items containing all the keywords of the query
- Index = inverted file
 - Built from the queries (the set of all the words in the queries)

- Keyword $m \rightarrow$ set of queries q containing the keyword
- How it works
 - Item *i* published
 - For each keyword *m* of *i* : we get the list of queries *index*(*m*)
 - For each query in index(m), we increment the number of found keywords
 - Result: the queries that find all their keywords in *i*

Example of an information stream aggregator

- RoSeS
 - Research system for RSS information stream aggregation
 - More complex queries: keyword filtering, union, join
 - Multi-user publish/subscribe system
 - Continuous processing of the queries, no storage
 - Stream personalization and sharing

Page 11

3 types of instructions

• register feed

- Defines internal names for Source streams
- e.g.: register feed "http://feeds.nytimes.com/nyt/rss/HomePage" as nytimes

• create feed

- Creates new streams (Publications)
- e.g.: create feed englishNews
 - from nytimes | cnn | telegraph

• subscribe to

 Defines a <u>Subscription</u> to a Publication, a notification mode (rss, mail, sms) and a notification frequency

nytimes

cnn

englishNews

e.g.: subscribe to englishNews output mail "Jordi.Creus@lip6.fr" every 12 hours

Page 13

telegraph

Query (publication) language

- 4 operators: union, selection, join & window
- We want to express in the language
 - Big unions on collections of streams
 - Apply text filters on unions
 - Associate items from several streams (join)

Query (publication) language

• Example 2

create feed messiFeed

from (eurosport as $e \mid fcbarcelonaBlog)$ as $u \mid facebookMessi$

where \$e[author <> "diego"] and

\$u[title contains "messi"]

Query (publication) language

• Example 3

create feed myMovies
from allocine as \$a
join last 3 weeks on myFriendsTweets
 with \$a[title similar window.title]
where \$a[description not contains "julia roberts"]

• Observation: users ask often similar queries

• Goal: factorize operations to reduce the memory space and the processing effort

Page 17

Optimization example

Normalization

Subsumption graph

Subsumption graph

Steiner tree

Continuous ranking queries

- Boolean queries
 - An item is relevant or not for a query
 - No ranking among the result items for a query
 - E.g. RoSeS, the example of pub/sub index

• Ranking queries

- An item has a *relevance degree* for a query
- Item score for a query = relevance degree \rightarrow ranking is possible
- Ranking query types:
 - Items with scores above a given threshold
 - The best *k* items (top-k)

Vector model for textual similarity

- Vector model
 - Vocabulary of N words
 (e.g. words appearing in the queries)
 - A document d (item) = point in the
 N-dimensional space of the vocabulary
 - Coordinate on the dimension of word m: weight w_{md} of word m in document d
 - Same thing for query q
- Textual similarity

- w_{jd} w_{jd} w_{jq} w_{id} w_{id} w_{iq} w_{id}
- "Proximity" of vectors representing the documents / queries

Page 25

Similarity in the vector model

- Generally: cosine of the angle between the two vectors
 - $sim(d,q) = \cos(\theta) = \vec{d} \cdot \vec{q} / (\|\vec{d}\| * \|\vec{q}\|) = \sum_{m} (w_{md} * w_{mq}) / (\|\vec{d}\| * \|\vec{q}\|)$
 - Normalized vectors: $sim(d,q) = \vec{d} \cdot \vec{q} = \sum_{m} (w_{md} * w_{ma})$
- Computing the weights w_{md}
 - Most common model: *tf-idf*
 - *Term frequency* (tf): measures the number of occurrences of *m* in *d*
 - Inverse document frequency (idf): measures the capacity of the word to differentiate the documents
 - Other parameters may be used (e.g. document size)

$$w_{md} = \alpha_{md} * tf_{md} * idf_m$$

Page 27

Continuous processing of top-k textual queries

- Queries (~documents)
 - Expected result = the k best items for each query (top-k)
 - w_{mq} already computed and the queries are indexed
 - Common index used: *inverted file* word $m \rightarrow$ sorted list of queries q in descending order of w_{mq}

m ₁	 m _i	 m _n
$q_{1,1}(w_{1,1})$	$\mathbf{q_{i,1}}(\mathbf{w}_{i,1})$	$\boldsymbol{q_{n,1}}(\boldsymbol{w}_{n,1})$
$q_{1,2}(w_{1,2})$	$q_{i,2}(w_{i,2})$	$q_{n,2}(w_{n,2})$

- Arrival of an item d
 - Compute w_{md} for all words *m* of *d*
 - For each word *m* of $d \rightarrow$ traverse the index list of $m \rightarrow$ candidate queries for *d* by decreasing degree of interest
 - For each candidate query q: evaluate sim(d, q)
 - Possibly d may enter the top-k for q
 - Various strategies to limit the number of processed candidates

• COL-Filter algorithm

 $score(d, q) = \sum_{m \in d} (w_{md} * w_{mq})$

- For each query q: a list of top-k items and a threshold μ_q (k-th score)
- Index = lists of q for each word m sorted in descending order of w_{mq} / μ_q

m	 n	 m
$\mathbf{q_{1,1}}(\mathbf{w}_{1,1}/\mu_{1,1})$	$\mathbf{q_{i,1}}(w_{i,1}/\mu_{i,1})$	$q_{n,1}(w_{n,1}/\mu_{n,1})$
$\mathbf{q_{1,2}}(\mathbf{w}_{1,2}/\mu_{1,2})$	$\mathbf{q_{i,2}}(w_{i,2}/\mu_{i,2})$	$q_{n,2}(w_{n,2}/\mu_{n,2})$

- $f_d(q) = \operatorname{score}(d, q) \mu_q = \sum_{m \in d} (w_{md} * w_{mq}) \mu_q$
 - The top-k list of q is updated if $f_d(q) > 0 \rightarrow \sum_{m \in d} (\mathbf{w}_{md} * \mathbf{w}_{mq} / \mu_q) > 1$
- Threshold Algorithm
 - Candidate queries considered following the list order: $q_{1,1}, q_{2,1}, ..., q_{n,1}$, then $q_{1,2}, q_{2,2}, ...$
 - If V_m is the last w_{mq/μ_q} seen in the list of $m \rightarrow V_m$ decreases during the traversal
 - If $F_d(q) = \sum_{m \in d} (\mathbf{w}_{md} * \mathbf{V}_m) \rightarrow F_d(q)$ decreases during the traversal
 - When $F_d(q) \le 1$ the algorithm can stop

Page 29

Threshold Algorithm

Source: Ilyas, I. F., Beskales, G., and Soliman, M. A. 2008. A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40, 4, Article 11 (October 2008)

Information streams in social networks

- Classical information streams on the web
 - The user does not have an important role
 - Sources and users (queries) are not related
 - Relevance of an item for a query \rightarrow textual content criteria

Social networks

- The user plays a central role
 - Users produce messages (items)
 - Users consume messages
 - Users may interact with messages (like, comment, ...)
 - Relations between users
- The relevance of a message for a query \rightarrow textual + social criteria
- Message importance decreases in time

Types of social networks

- Entities in a social network
 - Users: with possibly explicit links between them
 - *Content*: documents (web pages, photos, videos, etc.)
 - May also have links between them (web pages)
 - Messages: text + possibly links to documents
 - Sometime: the message may be a simple tag associated to a document
- Three main types of social networks
 - Unidirectional networks (Twitter)
 - Symmetric networks (Facebook)
 - Tagging networks (Flickr)
- In practice: a mix of different types
 - Facebook: also unidirectional for the fan pages
 - Flickr: tags and friendship links (for access control to published content)

- A user can follow the messages of other users
 - E.g. Twitter
 - Public text messages
 - Documents indirectly addressed through links in the text
 - Hashtags, localization, timestamp, ...
 - Interaction with messages: re-tweet, reply, favorite
- Implicit query = the messages of the followed users
 - Other queries: explicit by hashtag, by keywords

Page 33

Symmetric networks

- Friendship links between users (symmetric)
 - E.g. Facebook
 - Private text messages, visible by the friends
 - Documents indirectly addressed through links in the text
 - Interaction: like, comment, ...
- Implicit query = the messages of the friends

- Users associate tags to documents
 - Unconstrained tags ("folksonomy") or predefined tags
 - No explicit link between users
 - E.g. Delicious (bookmarks), Flickr (photos)
- Tags associated to a document \rightarrow descriptive meta-document
 - Search by tags = textual search on the descriptive meta-documents
- Implicit link between users
 - u₁ and u₂ use similar tags for the same documents
 - u₁ tags a document produced by u₂

Information streams in social networks

- Messages produced by the users
 - Stream of textual messages, of tags, interactions
- Queries: various forms of textual monitoring queries
 - Generalization:
 - User profile defined by a set of terms (weighted)
 - Implicit textual query based on these terms, on all the followed streams
 - Relevance: textual content + social network criteria
 - Message importance decreases in time

Example of relevance model in a social network

• Importance for user u of a message m published by u^m

score (m, u) = α content (m, u) + (1- α) social (m, u) content (m, u) = *similarity* (m, profile(u))

social (m, u) = β global (m) + (1 - β) local (u, u^m) global (m) = γ importance (u^m) + (1 - γ) interaction (m) local (u, u^m) = relative-importance (u, u^m)

- Score criteria
 - Content score: content similarity between message and user profile
 - Global social score: emitter importance, interaction with the message
 - Local social score: relative importance of the emitter for the user in the social network

Page 37

Considering time

- Decrease of the importance of messages in time
- Two main approaches proposed so far
 - Limited period of interest: sliding temporal window
 - Message deleted when exiting the window
 - Continuous decrease of the score: decay function $TD(\Delta t)$
 - TD : $R_+ \rightarrow [0, 1]$ decreasing, with TD(0) = 1
 - For a message *m* published at t_m : tscore(m,u,t) = score(m,u) TD(t-t^m)
 - Order preserving decay function: if tscore(m₁,u₁,t) ≤ tscore(m₂,u₂,t) then tscore(m₁,u₁,t') ≤ tscore(m₂,u₂,t'), ∀t'>t
 - In practice: bonus function **TB**(Δt) relative to a time origin t₀
 - Advantage: not changing in time

 $tscore(m, u, t) = score(m, u) \cdot TB(t^{m} - t_{0})$

TB : $\mathbf{R}_+ \rightarrow [1, \infty)$ monotonically increasing

Ranking queries for social networks

- More difficult compared to classical web information streams
 - More complex relevance function (textual + social)
 - Management of the time factor
 - Considering interactions with messages
 - Top-k update on several event types
- Events to consider
 - New published message
 - New interaction with a message
 - Creation/deletion of links between users

Example: the SANTA algorithm

- Scoring function
 - Content-based scoring: normalized cosine similarity
 - Local social scoring: relative importance function $f(u_i, u_j)$
 - Global social scoring: G(m)

$$score(m, u) = a \sum_{t_i \in m} w_{im} w_{iu} + b f(u, u^m) + c G(m)$$

- Update condition: message m enters the top-k list of user u
 - $\mu_u = k$ -th score of the user u query

$$F(m, u) = score(m, u) - \mu_u > 0$$
$$a \sum_{t_i \in m} w_{im}[w_{iu}] + b [f(u, u^m)] + c G(m) + [-\mu_u] > 0$$

The SANTA index structure

- Simple and extensible index structure
 - Efficient, easily parallelizable
- Minimizes the update effort
- Threshold algorithm given the monotonicity of F(m, u)

