Information streams on the web

Dan VODISLAYV

CY Cergy Paris Université
Master Recherche M2 SIC

Databases and streams

e Data streams
— Data arriving in streams, with temporal stamps

— E.g. stock quotes, news, sensor data (position, temperature, ...), social
network messages, etc.

* What changes relative to classical databases?
— One may see each data item as a new line in a database table
— Arrival of a new item = insertion into the table

.. but
— One cannot store everything
— Need to react on the arrival of a new item

— Time plays a particular role
* At the data level: time stamp, item order
* At the event level: moment when a new item arrives

Page 2

Why stream processing?

Volume of data
— Impossible to store everything = Big Data

Frequent production of new content

— Reduce the delay between content production and consumption => react
on the arrival of a new item

Many datas are naturally produced as streams
— Sensors, stock quotes, news headlines, ...
— Applications for monitoring, surveillance, watching

Accelerated processing
— On-the-fly processing, filtering based
— Reduced need for (slow) access to stored data

Page 3

Stream processing approaches

* Two extreme approaches

queries

— Store everything (static) OO 0 M Data Stream | responses
. . . streams M t
* Every new arrived item is stored S oo aél;lsg;ﬁen

* Static (snapshot) query on the stored data
— Continuous processing (dynamic)

* No storage

 Continuous queries

 Intermediary approaches may be imagined

— Store everything, but trigger snapshot queries on the arrival of new data
* E.g. A snapshot query every N new items

— Continuous processing, but accessing stored data
* E.g. Filter the new items on a criteria based on stored data

e Stream types
— Data streams: items = structured data
— Information streams: items = text

Page 4

Continuous queries

Classical queries: data + queries at different moments
— Processing done at query time, on current data

Continuous queries: query + data at different moments
— Processing done each time new data arrives

Specificities of continuous queries
— Number of results — undetermined
— No access to the whole data
* Current item + possibly some older items stored by the system
— Results produced only on input events (arrival of an item)
— Generally less complex than classical queries

Continuous query = subscription
— A result 2 notification

PP e s Y | .
e General model Input { ——— | Continuous 1 900, Output
streams | ___— — — query stream

Page 5

Windows on streams

e Window = finite subsequence of stream items

— Preserve the order of the input items

 Inherent to stream processing
— Storage: actually, we store windows on streams (streams are unbounded)
— Continuous queries: necessary for expressing joins between streams

— Specific operations on streams: aggregation on windows
E.g.. The average of the last 10 days stock quotes

e Window types
— Sliding: determined by the current moment
* On duration: the items of the last n time units (hours, days, etc.)
* On the number of items: the last n items
— Condition based: determined by begin/end conditions
E.g. Starts when the quote becomes smaller than 40 $, ends by the end of the day
— Tumbling: partition items in a fixed way (by day, week, etc.)

Page 6

Information streams

e Streams of text messages
— Web syndication channels
— Social network messages

* Web syndication
— New information published on a communication channel
— Channel - content periodically updated by the server = information stream
— Users subscribe to channels

e RSS (Rich Site Summary, Really Simple Syndication)
— XML format for information publishing on the web

— Publication by updating an XML file that contains the most recent items
» Updated XML file = information stream

Page 7

RSS example

<?xml version="1.0' encoding="UTF-8' ?>
<rss version="2.0">
<channel>

<title>Le Monde.fr : Actualités a la une</title>
<link>http ://www.lemonde.fr</link>
<language>en</language>
<copyright>Copyright Le Monde.fr</copyright>
<pubDate>Fri, 11 Apr 2008 13 :36 :10 GMT</pubDate>

<item>
<title>Faute de "réponses concrétes", la FIDL appelle a une nouvelle gréve mardi</title>
<link>http ://rss.feedsportal.com/c/205/f/3050/s/e2301b/story01.htm</link>
<description>Le syndicat lycéen, recu vendredi par le ministre de |‘¢ducation, n'a pas été convaincu par les arguments de
Xavier Darcos. L'UNL, premier syndicat lycéen, doit étre recu en fin d'aprés-midi par le ministre.</description>
<pubDate>Fri, 11 Apr 2008 13 :24 :10 GMT</pubDate>
<guid isPermalink="false">http ://www.lemonde.fr/societe/article/2008/04/11/
faute-de-reponse-concrete-la-dl 1033455 3224.html ?xtor=RSS-3208</guid>
</item>

<item>
<title>Le Conseil d'Etat consacre le secret professionnel des avocats</title>
<link>http ://rss.feedsportal.com/c/205/f/3050/s/e2301c/story01.htm</link>
<description>La haute juridiction administrative a annulé partiellement, jeudi 10 avril, le décret d'application de la deuxieme
directive européenne contre le blanchiment des capitaux.</description>
<pubDate>Fri, 11 Apr 2008 13 :10 :44 GMT</pubDate>
</item>

Page 8

Publish-subscribe systems

Sources Users

> \ ' </Q2 .

n' \. J\Qm‘

S
Publication Subscription
Notification

>

e An item published by a source may interest several queries

— The index allows efficiently targeting the queries for notification

Page 9
Example of index
* Boolean text queries
— Common case: conjunctive queries = set of keywords
— Goal: find the items containing all the keywords of the query
* Index = inverted file my; > qy 5 Qo5 -
— Built from the queries (the set of all the words My Q5 2.5 -+
in the queries) M, Qo5 Qoo -oe

— Keyword m = set of queries ¢ containing the keyword

* How it works
— Item i published
— For each keyword m of i : we get the list of queries index(m)
— For each query in index(m), we increment the number of found keywords
— Result: the queries that find all their keywords in i

Page 10

Example of an information stream aggregator

e RoSeS

— Research system for RSS information stream aggregation
— More complex queries: keyword filtering, union, join

— Multi-user publish/subscribe system

— Continuous processing of the queries, no storage

— Stream personalization and sharing

Page 11

Architecture
RoSeS ﬂ
(e - —
/ A <,:>[Acquisition]<:> =
G ources
% Items to evaluate
» Evaluation & ~ o
go Optimization = é
=)
- A
Q<: — § P Query &l = || Publica
E Graph gﬂ tions
2 =
) Iy &)
% Items to publish
O .S —
ubscri
<2:I>t Dissemination J<:>\)<:>

K

n

|

m Page 12

The RoSeS language

3 types of instructions

 register feed
— Defines internal names for Source streams
e.g.: register feed “http://feeds.nytimes.com/nyt/rss/HomePage” as nytimes

e create feed
[nytimes] [cnn] [telegraph]

— Creates new streams (Publications)
e.g.: create feed englishNews
from nytimes | cnn | telegraph

englishNews

e subscribe to

— Defines a Subscription to a Publication, a notification mode (rss, mail, sms) and a
notification frequency

e.g.: subscribe to englishNews output mail “Jordi.Creus @lip6.fr”” every 12 hours

Page 13

Query (publication) language

e 4 operators: union, selection, join & window

* We want to express in the language
— Big unions on collections of streams
— Apply text filters on unions

— Associate items from several streams (join)

[nytimes] [cnn] [telegraph]

o Example 1

create feed newsOfSyria

from nytimes | cnn | telegraph

title contains “syria” V
title contains “assad”

where title contains “syria” or title contains “assad”

Page 14

Query (publication) language

o Example 2
create feed messiFeed
from (eurosport as $e | fcbarcelonaBlog) as $u | facebookMessi
where $e[author <> “diego”] and
$u[title contains “messi”’]

eurosport

author # “diego”

[fcbarcelonaBlog] [facebookMessi J

title contains “messi”

messiFeed

Page 15

Query (publication) language

e Example 3
create feed myMovies
from allocine as $a
join last 3 weeks on myFriendsTweets
with $a[title similar window.title]
where $a[description not contains “‘julia roberts”]

[myFriendsTweets]

— description contains

“julia roberts” last 3 weeks

title ~ window.title
myMovies

Page 16

Query optimization

e Observation: users ask often similar queries

y y B
. { srcz.] . (srr.4 . . [ares |

S
u

pub2

o (priedé) '
puBl
e Goal: factorize operations to reduce the memory space and the

processing effort

Page 17

Optimization example

r a8 Y : r b y N r N
[srel) [src2] | publ | Lsm:-B) | s_n:-Z-J ksrc-B)
¥ g 3 ik . S
Coann) (oo) Cobne) [sre)
Pu.l-:)l pu.l;)2 U I.
o (d)
oub3 |

Page 18

Normalization

L E\ \scm\ publ j’-srcfi-“[j’-src_Z-“{ j’-sch-‘j
: u .U u
o (anh) o () a(bac) (Q'J
publ pub2 u
c(”d)
| pub3
f srcl \ [E Tﬁ \:A»sch \\ f/src4 J
EETER alaabnac clanh) @la:a’b i G a(bachd) o (o a(bAcad) (o (d)
U U u
pu.bl pub2 pub3
Page 19
Subsumption graph
a b C [d e
ahc bAac bad cAd dae

aAbAac

Page 20

Subsumption graph

rate(src,) - selectivity(b A ¢) =
1 - selectivity(b) - selectivity(c) 0.

N

Page 21

a Search for a minimal Steiner tree

0.20. Minimal tree covering the set of terminal nodes J\ 0.
=Y F S Y
dnae

bad cAd

Page 22

Steiner tree

Page 23

Steiner tree

dae

[Cost=2.12]

Page 24

Continuous ranking queries

* Boolean queries
— An item is relevant or not for a query
— No ranking among the result items for a query
— E.g. RoSeS, the example of pub/sub index

* Ranking queries
— An item has a relevance degree for a query
— Item score for a query = relevance degree = ranking is possible
— Ranking query types:
* [tems with scores above a given threshold
e The best k items (top-K)

Events Event Changes = Nanan
processor u; (>

u, 11110
Data Index Results
structures || structures (top-k lists)
Page 25
Vector model for textual similarity
e Vector model
— Vocabulary of N words t word,
(e.g. words appearing in the queries)
— A document d (item) = point in the w d
N-dimensional space of the vocabulary WJJZ R > g
¢ Coordinate on the dimension of word m: o |
weight w, , of word m in document d . .
| ! wordg;
— Same thing for query ¢ ' ' s

e Textual similarity

— “Proximity” of vectors representing the documents / queries

Page 26

Similarity in the vector model

* Generally: cosine of the angle between the two vectors

- sim(d,q) = cos(8) = d - G/(||d]| * 1G1D) = T (Wona * Won/(||d]| * 11GI1)
— Normalized vectors:

Sim(d, q) = d - § = Tn (Wg * Wi [v
e Computing the weights w,_, wl d
— Most common model: tf-idf] r 4
— Term frequency (tf): measures the number ‘9?
of occurrences of m in d word,
— Inverse document frequency (idf): measures Wia Wig]

the capacity of the word to differentiate the documents
— Other parameters may be used (e.g. document size)

Wmd = amd * tfmd * 1dfm

Page 27

Continuous processing of top-k textual queries

e Queries (~documents)
— Expected result = the k best items for each query (top-k)
— Wy already computed and the queries are indexed
— Common index used: inverted file
word m = sorted list of queries ¢ in descending order of Wing

ml m - m
Ay, (Wy 1) g (Wi 1) qp1 (W, 1)
qy2(Wy) qi2(W;) qn 2 (W,)

 Arrival of an item d
— Compute w4 for all words m of d

— For each word m of d = traverse the index list of m = candidate queries
for d by decreasing degree of interest

— For each candidate query q : evaluate sim(d, q)
* Possibly d may enter the top-k for ¢
— Various strategies to limit the number of processed candidates

Page 28

Example of algorithm

* COL-Filter algorithm

score(d,) = Yned (Wima * Wg
— For each query ¢: a list of top-k items and a threshold {4 (k-th score)

— Index = lists of ¢ for each word m sorted in descending order of w,,,. / H,

ml mi mn
Q11 (Wy /My) q; 1 (W, /1) Q1 (Wp 11y 1)
q;2(Wy /My 5) q; 2(W;o/H;) 4 2(W, /M,)

~ f4(q) = score(d, 4) - By = Zmed Wag * Wang) - K
* The top-k list of ¢ is updated if f,(q) > 0 = X neqd (Wima * Wing/Hq) > 1
— Threshold Algorithm
¢ Candidate queries considered following the list order: q; 1, 515 -.-» q, 1> then q; 5, 455, -
e If V,, is the last w,,, i, seen in the list of m = V, decreases during the traversal
* IfF(q) = Ymed Wma * Vi) 2 Fy(q) decreases during the traversal
* When F,(q) <1 the algorithm can stop

Threshold Algorithm

First Step
oID | P1 OID | P2 T = 100
5 50 \ 3 50 |
1 35 2 40 A,
3 30 1 30 5: (60)
2 20 4 20
4 10 N 5 10
Second Step
T=175
OID | P1 OID | P2
5 50 3 50 3: (80)
1 35 2 4[] 1: (65)
3 30 1 30 5: (60)
2 20 4 20 2: (60)
4 10 5 10
L2 L ’ Buffer

Source: Ilyas, 1. F., Beskales, G., and Soliman, M. A. 2008. A survey of top-k query processing techniques in relational database
systems. ACM Comput. Surv. 40, 4, Article 11 (October 2008)

Information streams in social networks

* Classical information streams on the web
— The user does not have an important role
— Sources and users (queries) are not related
— Relevance of an item for a query - textual content criteria

¢ Social networks

— The user plays a central role
* Users produce messages (items)
» Users consume messages
» Users may interact with messages (like, comment, ...)
 Relations between users

— The relevance of a message for a query = textual + social criteria
— Message importance decreases in time

Page 31

Types of social networks

 Entities in a social network
— Users: with possibly explicit links between them

— Content: documents (web pages, photos, videos, etc.)
* May also have links between them (web pages)

— Messages: text + possibly links to documents

* Sometime: the message may be a simple tag associated to a document

e Three main types of social networks
— Unidirectional networks (Twitter)
— Symmetric networks (Facebook)
— Tagging networks (Flickr)

* In practice: a mix of different types
— Facebook: also unidirectional for the fan pages
— Flickr: tags and friendship links (for access control to published content)

Page 32

Unidirectional networks

A user can follow the messages of other users
— E.g. Twitter
— Public text messages
— Documents indirectly addressed through links in the text
— Hashtags, localization, timestamp, ...
— Interaction with messages: re-tweet, reply, favorite

e Implicit query = the messages of the followed users
— Other queries: explicit — by hashtag, by keywords

message
Page 33

Symmetric networks

 Friendship links between users (symmetric)
— E.g. Facebook
— Private text messages, visible by the friends
— Documents indirectly addressed through links in the text
— Interaction: like, comment, ...

e Implicit query = the messages of the friends

~ comment
--------- >|j message

Page 34

Tagging networks

e Users associate tags to documents
— Unconstrained tags (“folksonomy”) or predefined tags

— No explicit link between users
— E.g. Delicious (bookmarks), Flickr (photos)

» Tags associated to a document = descriptive meta-document

— Search by tags = textual search on

the descriptive meta-documents -

tags

o
. document
=)
document
=

& tags

=
Users . document

Page 35

e Implicit link between users

— uy and u, use similar tags for
the same documents

— u, tags a document
produced by u,

Information streams in social networks

e Messages produced by the users

— Stream of textual messages, of tags, interactions

e Queries: various forms of textual monitoring queries

— Generalization:
» User profile defined by a set of terms (weighted)
* Implicit textual query based on these terms, on all the followed streams

— Relevance: textual content + social network criteria
— Message importance decreases in time

Page 36

Example of relevance model in a social network

e Importance for user u of a message m published by u™

score (m, u) = o content (m, u) + (1-a) social (m, u)
content (m, u) = similarity (m, profile(u))

social (m, u) = 3 global (m) + (1 - B) local (u, u™)

global (m) =y importance (u™) + (1 - Y) interaction (m)
local (u, u™) = relative-importance (u, u™)

e Score criteria
— Content score: content similarity between message and user profile
— Global social score: emitter importance, interaction with the message

— Local social score: relative importance of the emitter for the user in the social
network

Page 37

Considering time

e Decrease of the importance of messages in time

e Two main approaches proposed so far
— Limited period of interest: sliding temporal window
* Message deleted when exiting the window
— Continuous decrease of the score: decay function TD(At)
* TD : R, = [0, 1] decreasing, with TD(0) = 1
* For a message m published at 7, : tscore(m,u,t) = score(m,u) TD(t-t™)

* Order preserving decay function:
if tscore(m,,u,,t) < tscore(m,,u,,t) then
tscore(m,,u,,t’) < tscore(m,,u,,t’), Llt’>t

— In practice: bonus function TB(At) relative to a time origin t,
* Advantage: not changing in time
tscore(m, u, t) = score(m, u) LTB(t™ - t)

TB : R, - [1, ©) monotonically increasing

Page 38

Ranking queries for social networks

* More difficult compared to classical web information streams
— More complex relevance function (textual + social)
— Management of the time factor
— Considering interactions with messages
— Top-k update on several event types

* Events to consider
— New published message
— New interaction with a message
— Creation/deletion of links between users

Content | candidates Results u, >
> -p]

. ?| update u, 4110
Social

e .
New message 3 Continuous

Index

Action event |-
é . J
processing &

~ /& u, 4>

Social network [- N S
Periodic /" update Data Results
changes . UPIIte > ,
—> updates structures (top-k lists)
. J

Page 39

Example: the SANTA algorithm

e Scoring function
— Content-based scoring: normalized cosine similarity
— Local social scoring: relative importance function f{u,, u;)
— Global social scoring: G(m)
score(m,u) = a Z WimWiu + b f(u,u™) + ¢ G(m)
ti€m
— Update condition: message m enters the top-k list of user u

* u, = k-th score of the user u query

F(m,u) = score(m,u) —u, >0

@) Win[Wi + b[f@u™]+ € 6(m) + [Si] > 0

t,iem

Page 40

The SANTA index structure

e Simple and extensible index structure

— Efficient, easily parallelizable
* Minimizes the update effort

e Threshold algorithm given the monotonicity of F(m, u)

:-tl ; 5Y ! u, u; Uy I p

| ! [
T I I |- :

I (w.w,,) I: A(u.flu.w)) 1 (.-
| | [

| v ! [

- e e = = dl e e e o e =

Text index Social index k-th score

