
Information streams on the web

Dan VODISLAV

CY Cergy Paris Université

Master Recherche M2 SIC

Databases and streams

• Data streams
– Data arriving in streams, with temporal stamps

– E.g. stock quotes, news, sensor data (position, temperature, …), social
network messages, etc.

• What changes relative to classical databases?
– One may see each data item as a new line in a database table

– Arrival of a new item = insertion into the table

… but
– One cannot store everything

– Need to react on the arrival of a new item

– Time plays a particular role

• At the data level: time stamp, item order

• At the event level: moment when a new item arrives

Page 2

Why stream processing?

• Volume of data
– Impossible to store everything  Big Data

• Frequent production of new content
– Reduce the delay between content production and consumption  react

on the arrival of a new item

• Many datas are naturally produced as streams
– Sensors, stock quotes, news headlines, …

– Applications for monitoring, surveillance, watching

• Accelerated processing
– On-the-fly processing, filtering based

– Reduced need for (slow) access to stored data

Page 3

Stream processing approaches

• Two extreme approaches
– Store everything (static)

• Every new arrived item is stored

• Static (snapshot) query on the stored data

– Continuous processing (dynamic)
• No storage

• Continuous queries

• Intermediary approaches may be imagined
– Store everything, but trigger snapshot queries on the arrival of new data

• E.g. A snapshot query every N new items

– Continuous processing, but accessing stored data
• E.g. Filter the new items on a criteria based on stored data

• Stream types
– Data streams: items = structured data

– Information streams: items = text

Data Stream
Management

System

DB

…

…streams

queries

responses

Page 4

Continuous queries

• Classical queries: data + queries at different moments
– Processing done at query time, on current data

• Continuous queries: query + data at different moments
– Processing done each time new data arrives

• Specificities of continuous queries
– Number of results – undetermined

– No access to the whole data
• Current item + possibly some older items stored by the system

– Results produced only on input events (arrival of an item)

– Generally less complex than classical queries

• Continuous query = subscription

– A result  notification

• General model

Page 5

…

…
Continuous

query
Input

streams

… Output
stream

Windows on streams

• Window = finite subsequence of stream items
– Preserve the order of the input items

• Inherent to stream processing
– Storage: actually, we store windows on streams (streams are unbounded)

– Continuous queries: necessary for expressing joins between streams

– Specific operations on streams: aggregation on windows

E.g.. The average of the last 10 days stock quotes

• Window types
– Sliding: determined by the current moment

• On duration: the items of the last n time units (hours, days, etc.)

• On the number of items: the last n items

– Condition based: determined by begin/end conditions

E.g. Starts when the quote becomes smaller than 40 $, ends by the end of the day

– Tumbling: partition items in a fixed way (by day, week, etc.)

Page 6

Information streams

• Streams of text messages
– Web syndication channels

– Social network messages

• Web syndication
– New information published on a communication channel

– Channel  content periodically updated by the server  information stream

– Users subscribe to channels

• RSS (Rich Site Summary, Really Simple Syndication)
– XML format for information publishing on the web

– Publication by updating an XML file that contains the most recent items

• Updated XML file  information stream

Page 7

RSS example

<?xml version='1.0' encoding='UTF-8' ?>

<rss version="2.0">

<channel>

<title>Le Monde.fr : Actualités a la une</title>

<link>http ://www.lemonde.fr</link>

<language>en</language>

<copyright>Copyright Le Monde.fr</copyright>

<pubDate>Fri, 11 Apr 2008 13 :36 :10 GMT</pubDate>

<item>

<title>Faute de "réponses concrètes", la FIDL appelle a une nouvelle grève mardi</title>

<link>http ://rss.feedsportal.com/c/205/f/3050/s/e2301b/story01.htm</link>

<description>Le syndicat lycéen, reçu vendredi par le ministre de l‘éducation, n'a pas été convaincu par les arguments de

Xavier Darcos. L'UNL, premier syndicat lycéen, doit être reçu en fin d'après-midi par le ministre.</description>

<pubDate>Fri, 11 Apr 2008 13 :24 :10 GMT</pubDate>

<guid isPermaLink="false">http ://www.lemonde.fr/societe/article/2008/04/11/

faute-de-reponse-concrete-la-dl 1033455 3224.html ?xtor=RSS-3208</guid>

</item>

<item>

<title>Le Conseil d'Etat consacre le secret professionnel des avocats</title>

<link>http ://rss.feedsportal.com/c/205/f/3050/s/e2301c/story01.htm</link>

<description>La haute juridiction administrative a annulé partiellement, jeudi 10 avril, le décret d'application de la deuxième

directive européenne contre le blanchiment des capitaux.</description>

<pubDate>Fri, 11 Apr 2008 13 :10 :44 GMT</pubDate>

</item>

...

Page 8

Publish-subscribe systems

• An item published by a source may interest several queries
– The index allows efficiently targeting the queries for notification

Page 9

S1

S2

Sn

Sources

.

.

.

.

.

.

Users

System

Index

Q1

Q2

Qm

items queries

Publication Subscription

Notification

Example of index

• Boolean text queries
– Common case: conjunctive queries = set of keywords

– Goal: find the items containing all the keywords of the query

• Index = inverted file
– Built from the queries (the set of all the words

in the queries)

– Keyword m  set of queries q containing the keyword

• How it works
– Item i published

– For each keyword m of i : we get the list of queries index(m)

– For each query in index(m), we increment the number of found keywords

– Result: the queries that find all their keywords in i

Page 10

m1  q1,1; q1,2; …

m2  q2,1; q2,2; …

…

mn qn,1; qn,2; …

Example of an information stream aggregator

• RoSeS
– Research system for RSS information stream aggregation

– More complex queries: keyword filtering, union, join

– Multi-user publish/subscribe system

– Continuous processing of the queries, no storage

– Stream personalization and sharing

Page 11

Architecture

Acquisition

Dissemination

S
y

st
em

 M
an

ag
er

C
at

al
o
g
 I

n
te

rf
ac

e

RoSeS

Evaluation &

Optimization

Sources

Publica
tions

Subscrip
tions

Query
Graph

Items to evaluate

Items to publish

Page 12

The RoSeS language

3 types of instructions

• register feed

– Defines internal names for Source streams

e.g.: register feed “http://feeds.nytimes.com/nyt/rss/HomePage” as nytimes

• create feed

– Creates new streams (Publications)

e.g.: create feed englishNews

from nytimes | cnn | telegraph

• subscribe to

– Defines a Subscription to a Publication, a notification mode (rss, mail, sms) and a
notification frequency

e.g.: subscribe to englishNews output mail “Jordi.Creus@lip6.fr” every 12 hours

nytimes cnn telegraph

englishNews

∪

Page 13

Query (publication) language

• 4 operators: union, selection, join & window

• We want to express in the language
– Big unions on collections of streams

– Apply text filters on unions

– Associate items from several streams (join)

• Example 1

create feed newsOfSyria

from nytimes | cnn | telegraph

where title contains “syria” or title contains “assad”

nytimes cnn telegraph

newsOfSyria

∪

σ title contains “syria” ∨
title contains “assad”

Page 14

Query (publication) language

• Example 2

create feed messiFeed

from (eurosport as $e | fcbarcelonaBlog) as $u | facebookMessi

where $e[author <> “diego”] and

$u[title contains “messi”]

eurosport fcbarcelonaBlog facebookMessi

messiFeed

σ author ≠ “diego”

∪

σ title contains “messi”

∪

Page 15

Query (publication) language

• Example 3

create feed myMovies

from allocine as $a

join last 3 weeks on myFriendsTweets

with $a[title similar window.title]

where $a[description not contains “julia roberts”]

allocine myFriendsTweets

myMovies

σ ¬ description contains
“julia roberts” ω last 3 weeks

⋈ title ~ window.title

Page 16

• Observation: users ask often similar queries

• Goal: factorize operations to reduce the memory space and the
processing effort

Query optimization

Page 17

Optimization example

Page 18

Normalization

Page 19

Subsumption graph

Page 20

Subsumption graph

rate(src2) · selectivity(b ∧ c) =
1 · selectivity(b) · selectivity(c)

Page 21

Subsumption graph

Search for a minimal Steiner tree

Minimal tree covering the set of terminal nodes

Page 22

Steiner tree

Cost = 2.23

Page 23

Steiner tree

Cost = 2.12

Page 24

Continuous ranking queries

• Boolean queries
– An item is relevant or not for a query

– No ranking among the result items for a query

– E.g. RoSeS, the example of pub/sub index

• Ranking queries
– An item has a relevance degree for a query

– Item score for a query = relevance degree  ranking is possible

– Ranking query types:
• Items with scores above a given threshold

• The best k items (top-k)

Page 25

Vector model for textual similarity

• Vector model
– Vocabulary of N words

(e.g. words appearing in the queries)

– A document d (item) = point in the
N-dimensional space of the vocabulary

• Coordinate on the dimension of word m:
weight wmd of word m in document d

– Same thing for query q

• Textual similarity
– “Proximity” of vectors representing the documents / queries

Page 26

wordj

wordi

d

q

θ

wiqwid

wjq

wjd

Similarity in the vector model

• Generally: cosine of the angle between the two vectors

– �
� �, � = cos � = �⃗ · �⃗/(�⃗ ∗ �⃗) = ∑ �wmd ∗ wmq)� /(�⃗ ∗ �⃗)
– Normalized vectors:

�
� �, � = �⃗ · �⃗ = ∑ �wmd ∗ wmq)�

• Computing the weights wmd

– Most common model: tf-idf

– Term frequency (tf): measures the number
of occurrences of m in d

– Inverse document frequency (idf): measures
the capacity of the word to differentiate the documents

– Other parameters may be used (e.g. document size)

wmd = αmd * tfmd * idfm

Page 27

wordj

wordi

d

q

θ

wiqwid

wjq

wjd

Continuous processing of top-k textual queries

• Queries (~documents)
– Expected result = the k best items for each query (top-k)

– wmq already computed and the queries are indexed

– Common index used: inverted file
word m  sorted list of queries q in descending order of wmq

• Arrival of an item d
– Compute wmd for all words m of d

– For each word m of d  traverse the index list of m  candidate queries
for d by decreasing degree of interest

– For each candidate query q : evaluate sim(d, q)
• Possibly d may enter the top-k for q

– Various strategies to limit the number of processed candidates

Page 28

qi,1(wi,1)

qi,2(wi,2)

.

mi

q1,1(w1,1)

q1,2(w1,2)

.

m1
.

qn,1(wn,1)

qn,2(wn,2)

.

mn
.

Example of algorithm

• COL-Filter algorithm

score(d, q) = ∑ �wmd ∗ wmq)�∈!
– For each query q: a list of top-k items and a threshold µq (k-th score)

– Index = lists of q for each word m sorted in descending order of wmq / µq

– fd(q) = score(d, q) - µq = ∑ �wmd ∗ wmq)�∈" - µq

• The top-k list of q is updated if fd(q) > 0  ∑ �wmd ∗ wmq
/�q�∈!) > 1

– Threshold Algorithm

• Candidate queries considered following the list order: q1,1, q2,1, …, qn,1, then q1,2, q2,2, …

• If Vm is the last wmq /
µq seen in the list of $  Vm decreases during the traversal

• If Fd(q) = ∑ �wmd ∗ Vm�∈!) Fd(q) decreases during the traversal

• When Fd(q) ≤ 1 the algorithm can stop

Page 29

qi,1(wi,1/µi,1)

qi,2(wi,2/µi,2)

.

mi

q1,1(w1,1/µ1,1)

q1,2(w1,2/µ1,2)

.

m1
.

qn,1(wn,1/µn,1)

qn,2(wn,2/µn,2)

.

mn
.

Threshold Algorithm

Source: Ilyas, I. F., Beskales, G., and Soliman, M. A. 2008. A survey of top-k query processing techniques in relational database
systems. ACM Comput. Surv. 40, 4, Article 11 (October 2008)

Page 30

Information streams in social networks

• Classical information streams on the web
– The user does not have an important role

– Sources and users (queries) are not related

– Relevance of an item for a query  textual content criteria

• Social networks
– The user plays a central role

• Users produce messages (items)

• Users consume messages

• Users may interact with messages (like, comment, …)

• Relations between users

– The relevance of a message for a query  textual + social criteria

– Message importance decreases in time

Page 31

Types of social networks

• Entities in a social network
– Users: with possibly explicit links between them

– Content: documents (web pages, photos, videos, etc.)

• May also have links between them (web pages)

– Messages: text + possibly links to documents

• Sometime: the message may be a simple tag associated to a document

• Three main types of social networks
– Unidirectional networks (Twitter)

– Symmetric networks (Facebook)

– Tagging networks (Flickr)

• In practice: a mix of different types
– Facebook: also unidirectional for the fan pages

– Flickr: tags and friendship links (for access control to published content)

Page 32

Unidirectional networks

• A user can follow the messages of other users
– E.g. Twitter

– Public text messages

– Documents indirectly addressed through links in the text

– Hashtags, localization, timestamp, …

– Interaction with messages: re-tweet, reply, favorite

• Implicit query = the messages of the followed users
– Other queries: explicit – by hashtag, by keywords

Page 33

reply

message

Symmetric networks

• Friendship links between users (symmetric)
– E.g. Facebook

– Private text messages, visible by the friends

– Documents indirectly addressed through links in the text

– Interaction: like, comment, …

• Implicit query = the messages of the friends

Page 34

comment

message

Tagging networks

• Users associate tags to documents
– Unconstrained tags (“folksonomy”) or predefined tags

– No explicit link between users

– E.g. Delicious (bookmarks), Flickr (photos)

• Tags associated to a document  descriptive meta-document
– Search by tags = textual search on

the descriptive meta-documents

• Implicit link between users
– u1 and u2 use similar tags for

the same documents

– u1 tags a document
produced by u2

Page 35

.

.

.

tags

document

tags

tags

document

documentUsers

Information streams in social networks

• Messages produced by the users
– Stream of textual messages, of tags, interactions

• Queries: various forms of textual monitoring queries
– Generalization:

• User profile defined by a set of terms (weighted)

• Implicit textual query based on these terms, on all the followed streams

– Relevance: textual content + social network criteria

– Message importance decreases in time

Page 36

Example of relevance model in a social network

• Importance for user u of a message m published by um

score (m, u) = α content (m, u) + (1-α) social (m, u)

content (m, u) = similarity (m, profile(u))

social (m, u) = β global (m) + (1 - β) local (u, um)

global (m) = γ importance (um) + (1 - γ) interaction (m)
local (u, um) = relative-importance (u, um)

• Score criteria
– Content score: content similarity between message and user profile

– Global social score: emitter importance, interaction with the message

– Local social score: relative importance of the emitter for the user in the social
network

Page 37

Considering time

• Decrease of the importance of messages in time

• Two main approaches proposed so far
– Limited period of interest: sliding temporal window

• Message deleted when exiting the window

– Continuous decrease of the score: decay function TD(∆t)

• TD : R+  [0, 1] decreasing, with TD(0) = 1

• For a message m published at tm : tscore(m,u,t) = score(m,u) TD(t-tm)

• Order preserving decay function:
if tscore(m1,u1,t) ≤ tscore(m2,u2,t) then
tscore(m1,u1,t’) ≤ tscore(m2,u2,t’), ∀t’>t

– In practice: bonus function TB(∆t) relative to a time origin t0

• Advantage: not changing in time

tscore(m, u, t) = score(m, u) ⋅ TB(tm - t0)

TB : R+ → [1, ∞) monotonically increasing

Page 38

Ranking queries for social networks

• More difficult compared to classical web information streams
– More complex relevance function (textual + social)

– Management of the time factor

– Considering interactions with messages

– Top-k update on several event types

• Events to consider
– New published message

– New interaction with a message

– Creation/deletion of links between users

Page 39

Example: the SANTA algorithm

• Scoring function
– Content-based scoring: normalized cosine similarity

– Local social scoring: relative importance function f(ui, uj)

– Global social scoring: G(m)

%&'() �, * = + , -.�-.* + 0 1 *, *� + & 2(�)
3.∈�

– Update condition: message m enters the top-k list of user u

• µu = k-th score of the user u query

4 �, * = %&'() �, * − 6* > 8
+ , -.� -.* + 0 1 *, *� + & 2(�)

3.∈�
+ −6* > 8

Page 40

The SANTA index structure

• Simple and extensible index structure
– Efficient, easily parallelizable

• Minimizes the update effort

• Threshold algorithm given the monotonicity of F(m, u)

