
Linked Open Data

Dan Vodislav

ETIS, Université de Cergy-Pontoise

Evolution of the Web

• Web 1.0

– Unstructured content

(text/HTML)

– Passive consumers

• Web 2.0

– More structured content

(XML, JSON)

– Active consumers

– Some big web sites managing

huge volumes of specialized

content types

Access to data

• HTML documents vs. Databases

– Dynamic generation of HTML documents

– Web forms

– Data = hidden web >> surface web

• In 2001, 60 hidden web sites

contained together more than 40 times

the size of the surface web

• Problems
– The “meaning” of the data exported

on the web (identifiers, attributes) is lost

– Data quality, coherence

Exploiting web data

• Surface Web search engines

• Data / hidden web mashups

• Mashup

– Simple integration of web data

• Data « instances » (entities)

• Union, no joins

– Service-oriented approaches

– Mashup integration steps

• Data extraction (wrappers)

• Calibration / cleaning

• Integration

• Visualization

Web 3.0

• Semantic Web

– Web 2.0 (diversity of

contents, producers/

consumers) +

semantics

– Towards an automatic

processing of web data:

programs, services,

reasoning

• How?

– First step: Web of Data

Web of Data

• Web of objects (entities) described by web data

– Descriptions of real world objects

– Links (relations) between these objects

– Global Dataspace gathering all this data

Open Data

• Publicly available data
– Data already available on the web + data made

public by various institutions

– « Open Data » movement supported by
governmental initiatives

• Various categories of data formats
★ Available on the web (any format), but with an
Open Data license

★★ Additionally, structured format (e.g. Excel vs.
image of a table)

★★★ Additionally, non-proprietary format (e.g. CSV
instead of Excel)

★★★★ Additionally, using open standards of the
W3C (RDF and SPARQL) to identify and make
accessible objects through dereferenceable URIs

★★★★★ Additionally, providing links to equivalent
elements in other sources

Format Recommendation

(scale from 0 to 5)

csv ★★★

xls ★

pdf ★

doc ★

xml ★★★★

rdf ★★★★★

shp ★★★

ods ★★

tiff ★

jpeg ★

json ★★★

txt ★

html ★★

Semantic Web levels

Linked Open Data (LOD)

• ★★★★★ part of the Web of Data
– RDF data published by different sources

– Links (also expressed in RDF) between RDF data of
these sources

• The four principles of the LOD (Tim Berners-Lee)
– Use URIs to name (identify) objects (resources)

– Use HTTP URLs as URIs, to make resources accessible
on the Web (dereferenceables)

– When such a URI is accessed, something useful is found
(in principle in RDF format)

– Links to other resources must be included, to be able to
discover new information

LOD Architecture

• Dataspace: three kinds of “actors” relative to each source

– The publisher

– The publishers of the other sources

– The data consumers

S1

RDF

RDF

S2

RDF

RDF

S3

RDF

RDF

Sn

RDF

RDF

. . .

links linkslinks

Applications

Integration layer: access to sources, instance

and vocabulary mappings, storage

Dataspace

• Specific architecture for data integration
– No global schema defined

– Each publisher uses his own specific structure/schema for data and specifies the
mapping to other data sources

– Progressive improvement of the quality of the global system

– The quality is proportional to the integration effort

 adapted to very large scale and very dynamic data integration

• In comparison: mediator architecture
– Big effort to define the global schema and

the mappings to all the sources

– Big effort to maintain the schema and
the mappings

– The quality is guaranteed

• Linked Open Data: RDF dataspace
– Integration effort: the links between sources

– Two kind of links: for instance identity (“sameAs”) and for vocabulary / concepts
(equivalence or subsumption of classes/properties)

Mediator

Source1 Sourcen

Adaptor1 Adaptorn

.

Q R=f(R1, …, Rn)

Q1 R1 Qn Rn

Who makes the integration effort?

• Shared effort between the publisher, other publishers and the consumers
– The publisher of source S

• Choses the vocabularies (new or reused)

• Publishes data in RDF

• Publishes identity links to other sources

• Publishes vocabulary links to other vocabularies

– The other publishers
• Publish identity links to data in S

• Publish vocabulary links to vocabularies in S

– The consumer = programmer of the data integration application
• Defines the way of accessing LOD data in the different sources

• Defines or deduces identity links between sources (with specific tools)

• Defines or deduces vocabulary links between sources (with specific tools)

• Cleans the data

• Integrates data (RDF warehouse)

• In comparison, with a mediator architecture: the consumer makes (almost)
everything

The LOD “cloud”

• The evolution of the LOD Web of Data
– May 2007: 500 million RDF triples, 120 000 RDF links

– September 2011: 31.6 billion RDF triples, 503 million links

– April 2015: the number of sources is multiplied by 4 compared to 2011

Page 13

LOD sources

• What kind of sources compose the LOD cloud ?

– RDF sources respecting the LOD constraints

– At least 1000 triples et 50 links to other sources in the cloud

– Access in HTML+RDFa, or RDF file, or SPARQL endpoint

• Who publishes open data ?

– Governments: European Union, USA, France (data.gouv.fr), …

– Cultural institutions: national libraries, museums, archives

– Other institutions

– See: http://linkeddata.org/, http://www.w3.org/wiki/SparqlEndpoints

• At the heart of the LOD cloud: DBpedia (http://dbpedia.org/)

– Advantage of DBpedia: covers a large set of concepts that other

sources can refer

DBpedia

• LOD source obtained from Wikipedia
– Use of the “info boxes” on the Wikipedia pages

– Use of the Wikipedia categories

• English version of DBpedia
– 4.58 million entities, out of which 4.22 million are instances of

the DBpedia ontology

– 580 million of RDF triples

– Other languages: DBpedia versions in 125 languages with links
between entities in the different languages

• Altogether: 3 billion RDF triples

• DBpedia Ontology
– 685 classes

– 2795 properties

• Access: SPARQL endpoint, download, other tools

RDF: Resource Description Framework

• Language of the Semantic Web
– Web resource description: web pages, images, videos, …

– Describes the properties of the resources or the relations
between resources

– Several possible syntaxes

– RDF Schema (RDFS): concepts, classes, schemas ontologies

• RDF model levels
– Physical level : triples / statements

• Base types : resources, properties, statements

• Complex types: collections, lists

– Schemas (RDFS): classes, property types
• OWL: more advanced elements

RDF triples

• Statement : triple (S, P, V)

– Knowledge “atom”

– Meaning: subject S has for property P the value V

• Or (Subject, Predicate, Object)

• Example
– (ETISPage, author, Michel)

– (ETIS, WebPage, ETISPage)

– (Michel, WebPage, PageMichel)

– (ETIS, director, Mathias)

– (Michel, name, "Michel Jordan")

• Comparison with the relational model : (ETIS, director, Mathias)

identifier director WebPage …

… … … …

ETIS Mathias ETISPage …

… … …

Laboratory

identifier name …

Michel Michel Jordan …

Mathias Mathias Quoy …

…

People

Resources and URI

• Resources and properties are identified by URIs
– S, P and V are given by URIs

– V may be also a literal value

• Remark: URI ≠ URL, URI not necessary a real web address

• Example (various possible notations)
– (http://www-etis.ensea.fr, dc:creator, #Michel)

– (#ETIS, #WebPage, http://www-etis.ensea.fr)

– (#Michel, #WebPage, http://perso-etis.ensea.fr/~jordan)

– (#ETIS, #director, #Mathias)

– (#Michel, #name, "Michel Jordan")

• Local URIs : #Michel, #ETIS, #WebPage, #director, #Mathias, #name

• External URIs : http://www-etis.ensea.fr, dc:creator, http://perso-
etis.ensea.fr/~jordan

• Literal values: "Michel Jordan"
– One may specify the type ("32"^^xsd:integer),

or the language ("Eiffel Tower"@en)

Namespace usage

• Local resources: specific, local namespace

– Groups and identifies local resource names: (#ETIS, #WebPage, …)
xmlns:mine="http://myapp.myorg.com"

– #ETIS means http://myapp.myorg.com#ETIS

– Alternate notation:
mine:ETIS or http://myapp.myorg.com/ETIS

• External resources: reference to specific namespaces

– Goal: use “standard” resources/properties

– E.g. Dublin Core: standard concepts about documents

xmlns:dc="http://purl.org/dc/elements/1.1"

dc:creator = the creator of a document/resource

• For the data types: XML Schema namespace
– xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Some common vocabularies

• Dublin Core: description of documents/resources
– Content: title, subject, description, source, language, relation, coverage

– Intellectual property: creator, contributor, publisher, rights

– Other: date, type, format, identifier

– Namespace: http://purl.org/dc/elements/1.1/

• FOAF (Friend of a Friend): description of persons
– Classes (Person, Group, Organization, Document, Image, …)

– Properties for Person: name, firstName, lastName, knows, homepage, …

– Namespace: http://xmlns.com/foaf/0.1/

• SKOS (Simple Knowledge Organization System): taxonomies
– Concept class

– Properties: broader, narrower, related, prefLabel, altLabel, …

– Namespace: http://www.w3.org/2004/02/skos/core#

RDF graph

http://www-etis.ensea.fr #ETIS

#Michel http://perso-etis.ensea.fr/~jordan

"Michel Jordan"

#WebPage

#director

dc:creator

#WebPage

#name

• Triple = two nodes (S, V) + the oriented edge (P) that connects them

• Set of triples oriented graph

#Mathias

Predefined elements

• rdf or rdfs namespaces
– xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

– xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

• For the types

– Property rdf:type

– Base types: rdf:Resource, rdf:Property, rdf:Statement

• For a statement (triple)

– rdf:subject, rdf:predicate, rdf:object refer to the three

elements of the triple

• Other examples further

RDF Schema

• Description of classes and property types
– Classes: rdfs:Class, rdfs:subclassOf

– Properties: rdfs:subpropertyOf , rdfs:domain, rdfs:range

(#Institution, rdf:type, rdfs:Class)
(#Laboratory, rdf:type, rdfs:Class)
(#Laboratory, rdfs:subclassOf, #Institution)
(#member, rdf:type, rdf:Property)
(#member, rdfs:domain, #Student)
(#member, rdfs:domain, #Researcher)
(#member, rdfs:range, #Institution)
(#ETIS, rdf:type, #Laboratory)

rdf:Property rdfs:Class

Researcher

Student

member Laboratory

ETIS

Institutionrdf:type

rdfs:subclassOf

Instances

Classes,

properties

Meta-classes

OWL

• OWL (Web Ontology Language) = extension of RDFS

– Can express more powerful constraints

– Reasoning possibilities

• RDF/RDFS

– Only constraints: rdfs:subClassOf and rdfs:subPropertyOf

– Class definition: by reference (URI) + declaration of
instances

• Open world assumption: a missing info is not necessarily false

 The set of instances of a class is not known

– Limited possibilities for reasoning

Class definition with OWL

• Several ways of defining a class
– Through a reference (URI)

– By enumerating the instances

– Through its properties

– As a union, intersection, difference of other classes

• Example of enumeration of instances

<owl:Class rdf:ID="mycontinents">
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Eurasia"/>
<owl:Thing rdf:about="#Africa"/>
<owl:Thing rdf:about="#NorthAmerica"/>
<owl:Thing rdf:about="#SouthAmerica"/>
<owl:Thing rdf:about="#Australia"/>
<owl:Thing rdf:about="#Antarctica"/>

</owl:oneOf>
</owl:Class>

Class definition with OWL (cont’d)

• Through the properties
– Property values: owl:allValuesFrom, owl:someValuesFrom, owl:hasValue

– Cardinality : owl:maxCardinality, owl:minCardinality, owl:Cardinality

Example: class whose elements have for property member only values of type Student
<owl:Restriction>

<owl:onProperty rdf:resource="#member" />
<owl:allValuesFrom rdf:resource="#Student" />

</owl:Restriction>

• By computation : owl:intersectionOf, owl:unionOf, owl:complementOf

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="mycontinents">
<owl:Class>

<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Europe" />
<owl:Thing rdf:about="#Africa" />
<owl:Thing rdf:about="#America" />

</owl:oneOf>
</owl:Class>

</owl:intersectionOf>
</owl:Class>

Relations between classes in OWL

• rdfs:subClassOf

– The instances of a class belong to the other class also

• owl:equivalentClass

– Classes having the same instances, but not addressing the

same concept

<footballTeam owl:equivalentClass us:soccerTeam />

• owl:disjointWith

– Two disjoint classes

Definition of OWL properties

• RDF Schema : rdfs:subPropertyOf, rdfs:domain et rdfs:range

• Relations between properties
– owl:equivalentProperty: the two properties have the same values, but are not

identical

– owl:inverseOf : a property is the inverse of the other one
<owl:ObjectProperty rdf:ID="child">

<owl:inverseOf rdf:resource="#parent"/>
</owl:ObjectProperty>

• Cardinality constraints
– Mono-valuated properties:

<owl:FunctionalProperty rdf:about="#spouse" />

– Inverse mono-valuated properties:
<owl:InverseFunctionalProperty rdf:ID="biologicalMother">

<rdfs:domain rdf:resource="#woman"/>
<rdfs:range rdf:resource="#person"/>

</owl:InverseFunctionalProperty>

• Logical constraints
– owl:SymmetricProperty (e.g. spouse)

– owl:TransitiveProperty (e.g. ancestor)

Hierarchies of OWL languages

OWL Lite

OWL DL
Full OWL

• Full OWL: RDF/RDFS + new OWL operators

– Powerful, but undecidable reasoning

• OWL DL (Description Logic)

– Restrictions on Full OWL that insure a decidable reasoning

– E.g. a class or a property cannot be an instance

• OWL Lite

– Restrictions on OWL DL that insure an efficient reasoning

– E.g. eliminating owl:unionOf,
owl:complementOf, owl:hasValue,
owl:disjointWith, …

SPARQL

• Query language for RDF data
– W3C Recommendation 2013 (SPARQL 1.1)

• The most common form of a SPARQL query:

SELECT [DISTINCT] ?var1 ?var2 … ?varm

WHERE { pattern1 .
pattern2 .
…
patternn }

– Patterns are triples in TURTLE format

– Variables are used in the patterns

– Conjunctive queries

– Result: table of values (bindings) corresponding to
(?var1, …, ?varm)

Example

#Michel

#ETIS
http://www-etis.ensea.fr

mine:WebPage

dc:creator

mine:member

"Michel Jordan"

foaf:name

http://perso-etis.ensea.fr/~jordan
mine:WebPage

#Mathias

mine:director

#Dan

mine:member

#Person #Laboratory #WebPage

rdf:type

"Dan Vodislav"

foaf:name

SELECT queries

• One or several patterns

– Any element of a pattern (triple) may be a variable

E.g. The members of the ETIS laboratory

SELECT ?x
WHERE {
<http://myapp.myorg.com/ETIS> <http://myapp.myorg.com/member> ?x .

}

or

PREFIX mine: <http://myapp.myorg.com/>
PREFIX : <http://myapp.myorg.com/>
SELECT ?x
WHERE {
:ETIS mine:member ?x .

}

Result
x

<http://myapp.myorg.com/Michel>

<http://myapp.myorg.com/Dan>

SELECT queries (cont’d)

E.g. Who has a web page and what is that page
PREFIX mine: <http://myapp.myorg.com/>
PREFIX : <http://myapp.myorg.com/>
SELECT ?x ?y
WHERE {
?x mine:WebPage ?y .

}

E.g. Who created the web page of the ETIS laboratory
PREFIX mine: <http://myapp.myorg.com/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://myapp.myorg.com/>
SELECT ?x
WHERE {
?x dc:creator ?y .
:ETIS mine:WebPage ?y .

}

x y

<http://myapp.myorg.com/ETIS> <http://www-etis.ensea.fr>

<http://myapp.myorg.com/Michel> <http://perso-etis.ensea.fr/~jordan>

x

<http://myapp.myorg.com/Michel>

Grouping the patterns by subject

E.g. The name and the web page of Michel

PREFIX mine: <http://myapp.myorg.com/>

PREFIX : <http://myapp.myorg.com/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?page

WHERE {

:Michel foaf:name ?name ;

mine:WebPage ?page .

}

name page

"Michel Jordan" <http://perso-etis.ensea.fr/~jordan>

Optional patterns

E.g. The name and the web page of ETIS members

PREFIX mine: <http://myapp.myorg.com/>

PREFIX : <http://myapp.myorg.com/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?page

WHERE {

:ETIS mine:member ?x .

?x foaf:name ?name .

OPTIONAL{

?x mine:WebPage ?page .

}

}

name page

"Michel Jordan" <http://perso-etis.ensea.fr/~jordan>

"Dan Vodislav"

Union

E.g. The ETIS members, including its director

PREFIX mine: <http://myapp.myorg.com/>

PREFIX : <http://myapp.myorg.com/>

SELECT ?x

WHERE {

{

:ETIS mine:member ?x .

}

UNION

{

:ETIS mine:director ?x .

}

}

x

<http://myapp.myorg.com/Michel>

<http://myapp.myorg.com/Dan>

<http://myapp.myorg.com/Mathias>

Sorting, limit, offset

E.g. The second person in alphabetical order of the name
PREFIX : <http://myapp.myorg.com/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?x
WHERE {
?x a :Person ;

foaf:name ?y .
}
ORDER BY ASC(?y)
LIMIT 1
OFFSET 1

• Remarks
– (?x a Type) is a shortcut for (?x rdf:type Type)

– ORDER BY may use ASC or DESC (ASC is the default value)

– LIMIT n limits the number of returned results to n

– OFFSET m discards the first m results

Filtering

E.g. The persons whose name starts by “M”
PREFIX mine: <http://myapp.myorg.com/>
PREFIX : <http://myapp.myorg.com/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?x
WHERE {

?x a :Person ;
foaf:name ?y .

FILTER (regex(?y, "^m", "i"))
}

• FILTER : Boolean condition on the value of the variables

– Arithmetic operators for numerical values

– Tests : isURI, isBlank, isLitteral

– Comparison operators

– Logical operators to combine conditions : &&, | |, !

– regex(text, pattern [, option])

Other query types

• ASK: existence test
E.g. Is there a web page for the ETIS laboratory?

PREFIX mine: <http://myapp.myorg.com/>
PREFIX : <http://myapp.myorg.com/>
ASK {

:ETIS mine:WebPage ?x .
}

• DESCRIBE: returns a description of the queried resources
– Non standard description returned by the SPARQL service

– In general: the values of the properties of the resource

E.g. Description of persons and of their web pages

PREFIX mine: <http://myapp.myorg.com/>
PREFIX : <http://myapp.myorg.com/>
DESCRIBE ?x ?y
WHERE {

?x a :Person ;
mine:WebPage ?y .

}

CONSTRUCT

• Builds a graph as a result

E.g. Laboratory members, with their name, their director and

the laboratory web page

PREFIX mine: <http://myapp.myorg.com/>

PREFIX : <http://myapp.myorg.com/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {

?m foaf:name ?n ;

mine:director ?d ;

mine:LabWebPage ?p .

}

WHERE {

?l a :Laboratory ;

mine:member ?m ;

mine:director ?d ;

mine:WebPage ?p .

?m foaf:name ?n .

}

Federated queries

• Query several SPARQL endpoints in a single query
E.g. ETIS laboratory members born at the same place as Claude Monet

PREFIX mine: <http://myapp.myorg.com/>

PREFIX : <http://myapp.myorg.com/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?name

WHERE {

:ETIS mine:member ?x .

?x foaf:name ?name ;

mine:bornAt ?place .

SERVICE <http://dbpedia.org/sparql> {

<http://dbpedia.org/resource/Claude_Monet> dbo:birthPlace ?place.

}

}

RDF on the Web

• Goal: semantic description of web pages content
– Web of documents web of data semantic web

– Support for data integration at the web scale

• How?
– Micro-formats and micro-data

– JSON-LD

– RDFa

– Linked Open Data

• Prerequisite : common standard vocabularies
– Dublin Core, FOAF, SKOS, etc.

Micro-formats and micro-data

• Semantic information added to HTML documents
– Used by web browsers, search engines, etc.

• Micro-formats: class attribute indicating predefined classes

– Predefined micro-formats for: person, institution, event, etc.

– See http://www.microformats.org/

– Drawback: not any kind of object can be described

E.g. Use of the hCard micro-format to describe persons
<div class="vcard">
<em class= "fn">Jean Dupont
Ingénieur chez <span

class="org">Google

2 rue du Moulin
Village-sur-Eau
54321

</div>

Micro-formats and micro-data (cont’d)

• Micro-data: extensible, more powerful than micro-formats,
types and properties are distinguished

– Predefined vocabularies (e.g. http://data-vocabulary.org -
Google, http://ogp.me/ns# - Open Graph from Facebook)

– Recently: Schema.org initiative (http://schema.org), to unify
micro-data types between the various web browsers

E.g. Use of Person and PostalAddress types
<div itemscope itemtype="http://schema.org/Person">

Jean Dupont
Ingénieur chez

Google
<span itemprop="address" itemscope

itemtype="http://schema.org/PostalAddress">
2 rue du Moulin
Village-sur-Eau
54321

</div>

RDFa

• RDFa = “RDF in attributes”
– RDF descriptions in (X)HTML pages through HTML attributs

– Can express all the RDF constructs: URI, namespaces, types, …

– Used by specialized web browsers, applications, …
• Richer results in search engines

E.g. (subject, property, value) triple

<p about="http://myapp.myorg.com/Michel"
property="http://xmlns.com/foaf/0.1/name">

Michel Jordan
</p>

– about (subject), property (property) attributes

– Value in the text within the HTML tag

RDFa (cont’d)

E.g. Relation between resources (subject, predicate, object)

<a about="http://myapp.myorg.com/Michel"

rel="http://purl.org/dc/elements/1.1/creator"

href="http://www-etis.ensea.fr">

Page created by Michel

– about (subject), rel (predicate), href (object) attributes

E.g. Object resources other than HTML links

<span about="http://myapp.myorg.com/ETIS"

rel="http://myapp.myorg.com/director"

resource="http://myapp.myorg.com/Mathias">

director: Mathias Quoy

– resource attribute instead of href

JSON-LD

• JSON for Linking Data

– Became popular with the expansion of the JSON format

– Data in JSON format as scripts within the HTML page

• Simple example

{

"@context": "http://myapp.myorg.com",

"@id": "http://myapp.myorg.com/ETIS",

"@type": "Laboratory",

"name": "ETIS",

"WebPage": "http://www-etis.ensea.fr",

"member": ["http://myapp.myorg.com/Michel", "http://myapp.myorg.com/Dan"]

}

RDFa, JSON-LD, micro-data, micro-formats

• Analysis in time on a representative sample of web sites

– 2012: micro-formats, RDFa and much less micro-data

– Growing of micro-data (schema.org effect)

– After 2015: JSON-LD, with a strong growing

– RDFa: good start, but slow increase and now decreasing

• Linked Open Data: publish data, not annotated documents

Challenges for exploiting web data

• Variety

– Automatic mapping between instances and

vocabularies

– Hidden web semantic web

• Volume

– Distributed management and search on the web

– Cloud computing RDF storage and querying

References

– T. Heath, C. Bizer, “Linked Data: Evolving the Web into a

Global Data Space”,

http://linkeddatabook.com/editions/1.0/

– linkeddata.org

