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Abstract

Since the development of quantum information theory, the hopes are to

have a device that outperforms present-day classical computers. That might

happen due to the quantum properties that classical bits do not have. This

thesis will cover Grover’s search algorithm that retrieves information from an

N size unsorted data set with a number of iterations of order O(
√
N) while

classically achieving it in a number of iterations of order O(N) iterations which

is more time-consuming. Current quantum processors are imperfect by being

vulnerable to noise, so the other part will discuss the physical realization of

quantum technologies, particularly superconducting transmon qubits, and how

they are built and controlled. The work aims to build quantum circuits that

perform Grover’s algorithm and then run it on the Qiskit interface to see how

it works and then on IBM quantum processors to see how noise affects the

results. One circuit will outperform the other. Thus, the composition of the

circuit plays a significant role. Also, some IBM processors will perform better

than others. Finally, the good results will be subjected to error mitigation

methods to improve the results.
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Introduction

Quantum computing employs the ideas of quantum mechanics and information the-

ory to address issues that are difficult or impossible to solve with today’s computers.

Quantum computing performs data operations by utilizing quantum phenomena

such as quantum bits, superposition, and entanglement.

Grover’s algorithm [1], commonly known as the quantum search algorithm, is a

quantum method for searching an unstructured data set using fewer iteration steps

than classical algorithms to locate the unique input to a black box function (Ora-

cle) by amplifying its probability of being measured. Recently this algorithm was

implemented by researchers on different quantum machines.

Researchers dedicated time to explaining the algorithm; they developed ways (cir-

cuits) that implement the theory [2, 3, 4]. However, few relate their work to the

physical system (qubits) that performs this algorithm, such as the source of errors

that appear in their results, and fewer try to implement an error correction model

to the algorithm to get better results which should rely on the type and the distri-

bution of errors, this makes going to a higher number of qubits infeasible.

This thesis will cover the theory of Grover’s algorithm and its implementation on

IBM devices, then a general view of how those IBM devices work and how noise

arises there. We will be studying two Grover circuits by running them on the Qiskit

interface and then on different devices on the IBM cloud, then comparing the cir-

cuits on one hand and the IBM devices on the other.

This work will be an introduction for those who want to work in the field of quantum

computing in particular on the IBM cloud; this may enable future work in quantum

error correction codes or applications of Grover’s algorithm in real-life problems.

The number of qubits in this study is not enough to be superior to classical search

algorithms, and the study is restricted to circuit model quantum computers, specif-

ically the superconducting qubits.

The thesis will be divided as follows; the first section will be comparing in general

classical and quantum computers, then in the second section, there will be a descrip-

tion of the function of Grover’s algorithm and the building of Grover circuits and
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ends by showing the result of implementing them in an ideal quantum computer on

the Qiskit interface. The third section will discuss the physical components of IBM

transmon qubits, how they function, and how to control them, then it will discuss

some of the noise sources and the errors resulting from them. By the end of that

section, the results of implementing both circuits -each on two different devices- will

be shown and discussed. Finally, there will be a conclusion summarizing the work

and giving prospects for this study.

1 Classical vs Quantum information

The computer has become a part of our daily life that facilitates it; it is a pro-

grammable device that stores, retrieves, and processes data. Computers have proven

capable of solving many problems, including global communication, international

commerce, the internet, and breakthrough in sciences such as medicine and aerospace

engineering and reaching artificial neural networks. A computer consists of numer-

ous building blocks (bits); an electric transistor can represent a bit. A bit holds

binary information (0, 1) in the form of two electrical current states on and off.

It is possible to use transistors for more than to turn the electrical current on and off

and to allow for different levels of current. Why do not we see electronic computers

were ternary[5], three states, or more states. It is impossible to go to these levels

because the more intermediate states there are, the harder it is to keep them all

distinguishable due to the noise at low energy levels or from the environment.

Boolean algebra’s mathematical branch deals with these states and sets the neces-

sary operations (gates) for manipulating them. In 1948 Claude Shannon constructed

the information theory [6] that underlies digital communications, compression, and

information storage. He also was one of the pioneers to digitalize Boolean algebra

into an electrical circuit.

Quantum mechanics revolutionized physics and changed our view about the physi-

cal world being fundamentally probabilistic rather than deterministic. This theory

states that very small or cold systems have wave properties, so they can be found

simultaneously in two independent (orthogonal) states until they are measured, caus-
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ing them to collapse into an individual state.

Quantum mechanics and information theory combined resulted in a new field called

quantum information theory. If it is realized physically in a quantum computer, this

device will be superior to a classical computer in some tasks. While a classical bit

can hold binary information (0, 1), a quantum bit (qubit) can be in a superposition

of |0⟩ and |1⟩ and generally represented as

|qubit⟩ = cos(θ/2) |0⟩+ eiΦ sin(θ/2) |1⟩ (1)

More explanation can be found in Appendix A.1. [7] introduces quantum informa-

tion and quantum computing.

The power of a quantum computer develops exponentially with the number of in-

teracting qubits, while the power of a traditional computer grows linearly with the

number of transistors. This superiority is one of the reasons why quantum computers

may someday outperform traditional computers in certain types of calculations.

2 Grover’s algorithm

Search Algorithms are intended to look for and recover an element from any struc-

tured data set in which it is stored. Classically, search algorithms were developed,

such as Linear Search, where each element is checked (sorted or unsorted data sets)

until the desired one is found; this algorithm takes an N/2 average number of itera-

tions to get the result, where N is the number of data elements. Binary Search is a

search algorithm that works on sorted data sets, and it goes by getting the average

of the first and last element and then taking the interval that contains the wanted

data; this algorithm takes the order log(N) number of steps.

A Quantum search algorithm is a protocol that enables one to get specific data in an

unorganized data set. In the quantum realm, taking advantage of quantum paral-

lelism, the algorithm can be performed with less number of iterations -less complex-

ity than classical algorithms- using the superposition and entanglement properties

of quantum states.

Let N = 2n be the number of possible permutations of n qubit states.
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This protocol can be performed in O(
√
N) iterations to get the most probability

of measuring the intended result. It seems that Binary Search with complexity

O(logN) is faster than Grover’s algorithm with complexity O(
√
N), but we forgot

that Binary search works only for sorted data sets, and it needs O(N ∗ log(N)) to

sort a data set.

The data set is is defined as a Hilbert space H⊗N with an orthonormal basis set

B = {|x⟩ =
⊗

i |qi⟩ | |qi⟩ = 0 or 1}.

f(x) : H⊗N → H⊗N is a function such that

f(x) =

 0 x ̸= xsol

1 x = xsol

(2)

where xsol is the element wanted in the data set.

Preparation step

First let us prepare the total state of qubits in |s⟩ = |++ ...+⟩ = |+⟩⊗n.

Let us initialize n qubits to |0⟩⊗n state and then apply a Hadamard gate H⊗n to

get |+⟩⊗n where the total state is a superposition of 2n possible states (compare

Appendix A.3).

|s⟩ = |+⟩⊗n =
1√
2n

∑
2n

|x⟩ (3)

where |x⟩ ∈ B.

This vector can be decomposed into two basis vectors |ω⟩ ≡ |xsol⟩, the solution

searched for, and |s′⟩ ≡
∣∣x⊥

sol

〉
, the combination of the rest of the states (vectors),

which is orthogonal to the solution.

|s⟩ = cos(θ/2) |s′⟩+ sin(θ/2) |ω⟩ (4)

|s⟩ = 1√
N

∑
N

|x⟩ = 1√
N

∑
x̸=ω

|x⟩+ 1√
N

|ω⟩ (5)

|s⟩ =
√

N − 1

N

1√
N − 1

∑
x ̸=ω

|x⟩+ 1√
N

|ω⟩ =
√

N − 1

N
|s′⟩+ 1√

N
|ω⟩ (6)

The basis chosen is orthonormal. Targeted and the combination of the rest of the
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states are the vertical and horizontal vectors, respectively, in Figure 1.

Grover’s algorithm is a two-step protocol that is repeated (number of times de-

Figure 1: Geometrical representation of Grover’s algorithm

pending on the number of qubits) until we reach the solution |ω⟩.

First step

Reflect the initial state |s⟩ about |s′⟩, and this is step denoted by Uf and called

’Phase Oracle’ since it adds a minus sign (phase) to the |ω⟩ component.

Uf |s⟩ = cos(θ/2) |s′⟩+ eiπ sin(θ/2) |ω⟩ = cos(θ/2) |s′⟩ − sin(θ/2) |ω⟩ (7)

Second step

Reflect the resulting vector Uf |s⟩ about the initial vector |s⟩. This transformation

is denoted by V and called ’Diffuser’.

Outcome

The resulting state appears nearer to the solution than the initial state.

2.1 Circuit description

This section will describe two different circuits that will do the job described. Let

us apply the previously explained steps Uf in section 2.1.1 and V in section 2.1.2 in

each quantum circuit.
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2.1.1 Phase Oracle

The first step of Grover’s algorithm targets a specific state of the qubits, so we need

some multi-control gates to achieve this (compare Appendix A.3.2).

We can formulate Uf simply as,

Uf = 1− 2 |ω⟩ ⟨ω| (8)

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ x⟩ ≡ (−1)f(x) |y⟩

Circuit # 1
In this circuit, the qubits will be classified into three categories

• Control qubits: n qubits that hold the information of the data set (superposi-

tion of 2n states as in equation 3).

• The target qubit is the last qubit in the circuit shown, and it is responsible

for carrying the phase of the state.

• The ancilla qubit is the qubit that we do not care about its final form, but it

helps to perform multi-control gates.

Add a target qubit that is prepared in |−⟩, such that if a multi-control gate is applied

to this qubit, a minus sign (phase) appears. X |−⟩ = |1⟩−|0⟩√
2

= − |−⟩ and because

|−⟩ is an eigenvector of X with an eigenvalue -1.

q0 : X • X

q1 : •

q2 :

The Toffoli gate activates (flips the target) on |11⟩, however in the circuit before,

the addition of an X gate prior to the Toffoli gate made it activates on |q0q1⟩ = |01⟩.

So using the Toffoli and X gate, we can build oracles that any specific state can
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activate, and the property of |−⟩ adds a phase to a specific state.

Here, we will present an example of targeting a particular state

q0 : • •
q1 : X • • X
q2 : •
q3 : •
q4 :

In our particular case, we construct an oracle that adds a phase to q4 at |q0q1q2⟩ =

|101⟩, where q3 is an ancilla qubit that helps to perform a three control gate that is

not defined by qiskit. Check Appendix C.2.1 for its code.

Circuit # 2
In this circuit, the same idea of applying a NOT gate on the qubit is wanted to

be |0⟩. However, instead of having extra qubits (ancilla and target qubits), the

targeted state is between the data set qubits (it does not matter which) followed

and preceded by a Hadamard gate controlled by the other qubits.

q0 : X H H X
q1 : •
q2 : •

This oracle, for example, targets |110⟩ to invert it. The result measured will be

viewed inverted in the form of |q2q1q0⟩ in general. Check Appendix C.3.1 for its

code.

2.1.2 Diffuser

In this phase, all the states targeted to be flipped about the initial state |s⟩, as

shown in Figure 1.

Let Uf0 = 2 |0⟩⊗n ⟨0|⊗n − 1

V = H⊗nUf0H
⊗n = 2 |+⟩⊗n ⟨+|⊗n − 1 = 2 |s⟩ ⟨s| − 1 (9)
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This oracle reflects the given state about |s⟩.

A straightforward application of the gates H⊗nUf0H
⊗n, where Uf0 is simply Uf from

section 2.1.1 targeting |000⟩ state.

Circuit # 1
This oracle looks like Circuit # 1 of section 2.1.1 targeting |000⟩ with a Hadamard

gate on each control qubit before and after Uf0

q0 : H X • • X H
q1 : H X • • X H
q2 : H X • X H
q3 : •
q4 :

Check Appendix C.2.2 for its code.

Circuit # 2
This oracle looks like Circuit # 2 of section 2.1.1 targeting |000⟩ also with a

Hadamard gate on each control qubit before and after Uf0

q0 : H X H H X H
q1 : H X • X H
q2 : H X • X H

Check Appendix C.3.2 for its code.

2.1.3 Number of iterations

Circuits # 1 of sections 2.1.1 and 2.1.2 and Circuits # 2 of sections 2.1.1 and 2.1.2

should be performed repeatedly to get the desired result. However, is there a limit

to the number of times we should do them? Alternatively, as we do it more, and

more we approach the result.

The algorithm should should be repeated multiple times. If this was not respected,

then the measurement results will not be as wanted.

Lemma 1. The number of iterations to complete the Grover algorithm is of order

O(
√
N). [4]
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Proof.

V Uf |s⟩ = cos(3θ/2) |s′⟩+ sin(3θ/2) |ω⟩ (10)

V Uf |s⟩ = cos(θ + θ/2) |s′⟩+ sin(θ + θ/2) |ω⟩ (11)

(V Uf )
r |s⟩ = cos(rθ + θ/2) |s′⟩+ sin(rθ + θ/2) |ω⟩ (12)

if (V Uf )
r |s⟩ = |ω⟩, then rθ + θ/2 = π/2 so r = π/2θ − 1/2. Knowing that θ =

arcsin(1/
√
N) ≃ 1/

√
N then r = π

√
N/2− 1/2 ≃ O(

√
N)

For three qubits, the algorithm is repeated twice.

Now let us combine everything explained before into a circuit for each case. We get

Circuit # 1
Put the Phase oracle and the Diffuser oracle in sequence and repeat that twice, as

mentioned after the proof. After preparing ’q0, q1, q2’ in |+++⟩ with Hadamard

gates, and ’q4’ the target qubit in |−⟩. Let them pass along ’q3’ the ancilla qubit

through the circuit. Furthermore, measure the results at the end.

q0 : |0⟩ H

Uf

0

V

0

Uf

0

V

0

q1 : |0⟩ H
1 1 1 1

q2 : |0⟩ H
2 2 2 2

q3 : |0⟩ 3 3 3 3

q4 : |0⟩ X H
4 4 4 4

c : 0 /3
0

��
1

��
2

��

Check Appendix C.2.3 for its code.

Circuit # 2
The same is done for this circuit. But without using ancilla qubit or an extra target

qubit since it is one of the qubits representing the input data (data set). Then the

results are measured.

q0 : H

Uf

0

V

0

Uf

0

V

0

q1 : H
1 1 1 1

q2 : H
2 2 2 2

meas : /3
0

��
1

��
2

��

9



Check Appendix C.3.3 for its code.

This algorithm is not exact; there appears to be an angle gap between the wanted

state and the actual final state with a maximum value θ << 1. This angle represents

the probability of not observing the wanted state after applying the algorithm or

the error. The probability of that happening is

perror = sin2(θ) ≃ θ2 =
1

N
(13)

2.2 Graphical representation

Another way to look at this algorithm is to visualize it as a reflection of the states’

mean.

(a) All states have equal
amplitude when we apply
the Hadamard gates to ini-
tial zero states

(b) After Uf is applied, |ω⟩
is the inverted state, so the
mean of the whole state de-
creases by a bit.

(c) After applying the Dif-
fuser oracle, all the states
are flipped around the
mean

Figure 2: The X-axis represents the N states of n qubits; the Y-axis represents the
probability of each state, taken from [4]

.

We can observe that we have |ω⟩ with a higher probability than other states.
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2.3 Results

After discussing some protocols in this chapter, let us see if we can implement them

on the Qiskit interface and then on IBM freely accessible devices. Let us present

some of our results; we got the following results that will be explained, compared,

and interpreted.

(a) |010⟩ targeted. X-axis represents the
states measured

(b) |011⟩ targeted. X-axis represents the
states measured

(c) Measuring the number of counts of each
state while changing the target state

Figure 3: Performing both of the protocols on Qiskit interface

In Figures 3a and 3b, we target |010⟩ and |011⟩, respectively. As expected for a

single solution algorithm, in ideal conditions of a quantum computer, the targeted

state will appear with a probability near 1, and we can observe the algorithm’s error

in equation 13. We can also observe some small probabilities in other states than

the targeted ones in Figures 3a and 3b, that is because of the angle gap expressed

in equation 13. In Figure 3c, we target each state arranged on the vertical axis,
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then measure the number of occurrences and display the probabilities of each state

on the horizontal axis beside the targeted state. The color intensity represents the

probability (represented on the color bar). As predicted, the color map should have

a diagonal line indicating the wanted state’s high destructibility.

3 State of the art on Quantum devices

Quantum computing is usually viewed as a single entity. However, there are several

techniques for converting various quantum systems into quantum computers within

the domain of quantum computing. There also exist different approaches to manip-

ulating a system of qubits. The circuit model is a common way to get the qubits

to reach a wanted state; it is performed by applying a series of unitary gates. The

measurement-based model is a particular case of ’quantum circuits happens with

intermediary measurements’. One first prepares an entangled resource state then

performs single qubit measurements on it of form MXY (θ) = cos(θ)X − sin(θ)Y ,

where θ determines the basis of measurement. This measurement depends on the

measurement of the previous qubit; the adiabatic model is motivated by quantum

many-body theory, where a set of qubits are prepared and then subjected to a spe-

cific Hamiltonian so the system evolves adiabatically to a state that describes the

solution to the problem; there are other models such as topological quantum com-

puting and others. On the other side, the quantum computer can be realized in

several quantum systems, such as superconducting transmon qubits that depend

on a charge oscillating between two superconducting metals tunneling through a

Josephson junction [8, 9, 10]. Trapped ions quantum systems are another kind of

implementation of qubits; the system is a line of ions that are cooled in magneto-

optical traps using lasers; the ion is controlled by a laser and transitions between two

hyperfine components or Zeeman sublevels of the ground state [11, 12]. Photons are

quantum systems that can represent a qubit [13]; photonic qubits depend on photon

pulses controlled by optical devices such as beam splitters and phase shifters, and

the readout can be through photon counters; this system can work at room temper-

ature. Other systems can be mentioned, such as Magnetic Flux qubits that depend
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on the direction of the magnetic field induced by a superconducting loop of wire;

Quantum Dots can also represent a qubit where electrons are restricted to a small

area in the material, and its state depends on the spin or the charge there.

3.1 IBM superconducting qubits

For their quantum processors, IBM developed superconducting qubits, also known

as transmon qubits. Some processors can exceed a hundred qubits and are accessi-

ble via the IBM-Quantum cloud [14]. A transmon qubit is a microwave resonator

that stores specific frequencies of electromagnetic waves, the energy of the qubit is

confined between the ground state |0⟩ and the first excited state |1⟩. In this section,

we will dive into the technology behind these qubits and explain the choice of anhar-

monic oscillators over harmonic oscillators solved exactly by quantum mechanics.

Understanding that will help to identify the noise sources, that in turn helps to

figure out the most efficient error correction model for the case we are studying.

3.1.1 Physical components

Let us first talk briefly about the superconductivity phenomenon [15]. As the tem-

perature of a regular conductor decreases, the resistance lowers due to the fewer

vibrations of the conductor’s lattice but still resistants electrons, which is due to the

impurity scattering between the electron and the lattice or electron-electron scat-

tering at lower orders. This resistance carries away information about the electrons

in the form of phonons, not allowing observing the resonator’s quantum behavior.

John Bardeen, Leon Cooper, and John Robert Schrieffer were awarded Nobel Prize

in physics in 1972 for developing the microscopic theory of superconductivity (BCS

theory)[16]. A superconducting material acts as a conductor at room temperature,

but below some critical temperature, the electrons passing through the lattice de-

form it; this deformation attracts the electrons leading to a pairing of opposite spin

electrons, called Cooper pairs. These pairs travel without any resistance in the lat-

tice.

A transmon qubit is composed of two superconducting pads that are cooled down

to millikelvins and connected by a bridge which is an inductor, as shown in Figure
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4. An electric field is applied across the pads creating two (positive and negative)

islands of charges, which induces an internal electric field and, as a voltage, the pads

act as a capacitor that holds electric energy. If a charge passes (tunnels) from one

island to another through the bridge, a magnetic field is formed around it, acting as

an inductor of a circuit that holds magnetic energy. The system acts as an LC circuit

where electromagnetic energy oscillates with specific frequencies. The derivations

shown below in this chapter are presented in more detail in [10]

When the system is in a classical regime, we can describe it through a Hamiltonian

Figure 4: False-colored optical microscope image of a transmon qubit reproduced
from Ref. [17]

H =
Q2

2C
+

Φ2

2L
=

1

2
ℏωr(α

∗α + αα∗) (14)

Q and Φ are two variables: the charge of a pad and the magnetic flux, respectively,

and the systems C and L parameters are the capacitance and the inductance.

α is introduced to simplify the description, such as

α(t) =

√
1

2ℏωrZ
(Φ(t) + iZQ(t)) (15)

Z = L/C is the impedance, and ωr = 1/(LC) is the resonance frequency.

Going to quantum, we convert the variables to operators. α and α∗ become â and â†,

respectively, which will be known as the lowering and raising operators, respectively.

â |n⟩ =
√
n |n− 1⟩ and â† |n⟩ =

√
n+ 1 |n+ 1⟩ =⇒ ⟨n| â†â |n⟩ = n and

Ĥ =
1

2
ℏωr(â

†â+ ââ†) (16)
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Here we dropped an additive constant since we measured the energy differences.

Q̂ = iQZPF (â
† − â) and Φ̂ = iΦZPF (â

† + â), where QZPF and ΦZPF are the zero-

point fluctuations of the charge and phase variables respectively, these two constants

can be viewed as the variance of the wave-function at the ground state.

This case is valid if the inductor bridge is linear, which results in a harmonic oscil-

lator, as shown in Figure 5a, with equal distancing between the energy levels. That

creates a problem in distinguishing the first two states from the rest. This prob-

lem pushed introducing anharmonicity through a non-linear bridge or a Josephson

junction. A Josephson junction consists of two superconducting pieces separated by

an insulator, shown in Figure 6, through which the cooper pairs tunnel [18]. This

process results in a Hamiltonian as the following

Ĥ =
Q̂2

2C
− EJ cos

(
ϕ̂

ϕ0

)
(17)

EJ being the Josephson energy, ϕ̂/ϕ0 is the reduced magnetic flux with ϕ0 = ℏ/2e.

Applying Taylor expansion to the equation to the fourth order and rewrite the

Hamiltonian in terms of the raising and lowering operators. We get

Ĥ ≃ Q̂2

2C
+

ϕ̂2

2LJ

− EJ

4!

(
ϕ̂

ϕ0

)4

= ℏωrâ
†â− EJΦ

4
ZPF

4!
(â+ â†)4 (18)

Where ΦZPF is the zero point fluctuation of Φ̂.

Classically, α from equation 15 evolves with time in phase space as α(t) = α(0)e−iω0t

in an oscillatory motion with frequency ω0. In the quantum case, the exact evolu-

tion of â within Heisenberg’s picture as â(t) = â(0)e−iω0t and â†(t) = â†(0)eiω0t.

Expanding equation 20 and using [â†, â] = 1, we get

H(t) =
∑
i,n=m

ciâ
†n(t)âm(t) +

∑
j,n̸=m

dj â
†n(t)âm(t) = Ĥ0 + ĤR(t) (19)

H0 is a stationary Hamiltonian where the exponentials cancel each other since n =

m, while HR(t) is a rotating Hamiltonian. Without going into calculation details

and using the Rotating Wave Approximation[19], the rotating term is neglected,
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(a) LC circuit representing
the quantum harmonic os-
cillator and its quantized
energy levels [8]

(b) Josephson qubit circuit
representing the quantum
anharmonic oscillator and
its quantized energy levels
[8]

Figure 5: Harmonic and anharmonic oscillators

Figure 6: Schematic diagram of a Josephson junction.[20]

and we get

Ĥ ≃ ℏω0â
†â− ℏα

2
â†â(â†â− I) (20)

The first term is the linear term, and the second is the nonlinear term or the per-

turbation caused by the Josephson effect.

3.1.2 Qubit control

Controlling a qubit is possible by coupling it to an external control such as a mi-

crowave drive that detects photons in the form of Rabi oscillations Figure 7. The

coupling between it and the qubit will provide a faster control on the qubit, but on

the other hand, there is a higher probability of dissipating the qubit information

in the form of radiative decay. While a weaker coupling reduces this dissipation, it

makes it slower to control the qubit. The Josephson quantum filter can suppress this
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decay by reflecting those photons to the qubit [9], but this will not be part of the

discussion or calculations. The readout of the information of the qubit is performed

through the circuit electrodynamics (cQED) dispersive monitoring technique; this

involves coupling the qubit to a quantum LC oscillator. This cavity isolates the

qubit from environmental noise and prevents it from leaking out information, and

most importantly, it permits to performance of a non-destructive measurement on

the qubit. The derivations shown below in this chapter were performed in more

detail by [10]

(a) Schematic view of trans-
mon qubit with its control and
readout.[9]

(b) Circuit of the transmon
qubit with its control and
readout and the filter. [9]

Figure 7: Schematic and circuit representation of the qubit and its control and
readout

Let us first take the simplest possible circuit by putting the cavity aside. We

end up having a drive coupled directly to the qubit; let us see the Hamiltonian of

this system.

Ĥdrive = −iΩ(t)/2(ĉ† − ĉ) (21)

Ĥdrive is the Hamiltonian of the drive with Ω(t) = Ω0 sin(ωdt + θd), with ωd being

the frequency of the drive with phase θd ≡ θ. The total Hamiltonian of this system

is

Ĥt = ℏ∆Ẑ/2 + ℏΩ/2(e−iθσ̂ + eiθσ̂†) (22)

The first term is related to the tuning of the qubit. While the second term varies

the phase σ, we can apply simple gates such as X̂ = 1
2
(σ̂† − σ̂), and Ŷ = i

2
(σ̂† + σ̂)

and then build more complicated gates. σ̂ =

0 1

0 0


In quantum mechanics, if a measurement is performed on a qubit, it collapses

in one state. Check AppendixA.1. Now, let us explain how to measure the qubit’s

17



state without destroying it. Consider the cavity while calculating the Hamiltonian

to see how the non-destructive measurement can happen. The total Hamiltonian is

Ĥtotal = Ĥlin + Ĥnonlin (23)

where Ĥlin = ℏωcb̂
†b̂+ ℏωqâ

†â and Ĥnonlin = −Ea

4!
[ΦZPF

1a (â† + â) + ΦZPF
1b (b̂† + b̂)]4

â† and â are the raising and lowering operators of the qubit, respectively. b̂† and b̂

are the raising and lowering operators of the cavity, respectively. Ea is the Josephson

energy, and ωc and ωq are the cavity frequencies and the qubit, respectively.

Applying the Rotating Wave approximation, the effective Hamiltonian of the cavity

is

Ĥeff
cav = ℏ(ωc − χâ†â)b̂†b̂ (24)

As seen, it depends on the state of the qubit â†â. Preparing the oscillator of the

cavity in the first excited state gives an effective energy

Eeff = ℏ(ωc − χnqubit) (25)

Knowing How the transmon qubit functions, let us investigate some of the noise

Figure 8: Predict the state of the qubit through the effective energy of the cavity

sources.

As seen in Figure 8, to predict the qubit’s state, we need to measure the effective

energy of the cavity, and it will be probabilistic to guess the qubit’s state, which

causes errors. According to [8], we can find different sources in the system;

• Charge noise can be induced by the presence of charged particles in the defects

or charge traps in the dielectric that sit in the junction tunnel barrier; it mainly

causes energy relaxation of the qubit, check section3.2.
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• Magnetic flux noise forms due to random polarization flipping on the surfaces

of the superconductors; this contributes to the phase shifting error; check

section3.2.

• The residual photons in the resonator, which come from higher temperature

stages of the dilution refrigerator, might cause photon number changes.

• Unpaired electrons (Quasi-particles) tunnel through the Josephson junction

can cause relaxation and pure dephasing, check section3.2; this will reduce as

the temperature decreases.

3.2 Error Models

From previous chapters, it is clear that the implementation of qubits is not ideal,

leading to errors in the results. In this section, we will be listing theoretical error

models. Errors can be classified into stochastic and coherent noises. In applica-

tion, it is impossible to isolate a system, especially a quantum bit (qubit), from its

environment; there will always be a random interaction or coupling between those

two systems, which leads to the decoherence of the qubit or its loss of irretrievable

information, this is called a stochastic noise. On the other side, coherent or sys-

tematic noise forms due to the imperfection of the device used, such as cross-talk

(unwanted interaction between qubits) or imperfect unitary operators applied, such

as miscalibrations drift (over or under rotate the state of the qubit slightly from the

needed state). These transformations do not affect the coherence of the qubit; in

fact, these errors might be controlled to interfere with each other destructively.

We can realize quantum errors in noise channels such as bit-flip, phase-flip, depolar-

ization, amplitude, gate, and readout channels. The binary symmetric channel can

describe bit flip error with probability p of flipping a state from |0⟩ to |1⟩ and vice

versa 1−p probability to preserve the state, check Figure9, p will increase with time

p = 1
2
(1− e−

t
T ) where T is the bit flip coherence time of the qubit. For example, let

us see the pure |0⟩ ⟨0| state transformation in a binary asymmetric channel

|0⟩ ⟨0| → (1− p) |0⟩ ⟨0|+ p |1⟩ ⟨1| (26)
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Figure 9: Scheme of a binary symmetric channel.

We can also build a binary asymmetric channel where the probability of flipping

from |0⟩ to |1⟩ is not equal to that from |1⟩ to |0⟩. In the phase-flip channel,

we lose a well-defined relative phase between |0⟩ and |1⟩. This phenomenon is an

exclusive quantum error not observed in classical bits. Check AppendixA.3 for a

basic explanation of the operators used here. We can describe bit-flip and phase-flip

errors through Pauli operators, σX as a bit-flip error, σZ as a phase-flip error, and

σY as a combination of those two errors.

A general representation of the transformations caused by these errors was given

by [3] as follows: Let pσ be the probability of occurrence of each error, whereσ =

σX , σY , σZ . Consider 2 operators E0 =
√
1− pσ1 (where no error occurs, acts as an

identity) and E1 =
√
pσσ (where error occurs). The general transformation on the

density matrix ρ is as follows:

ρ → ρ′ = ϵ(ρ) = E0ρE
†
0 + E1ρE

†
1 (27)

In the previous noise channels, the state of the qubit ρ becomes a mixed state.

These transformations can be described as one transformation that we can call a

depolarization channel. It can be represented in Kraus form [3].

ϵ(ρ) =
3∑

i=0

EiρE
†
i (28)

with E0 =
√
1− 3p

4
1, E1 =

√
p
4
X,E2 =

√
p
4
Y1, E3 =

√
p
4
Z and p/4 is the probabil-

ity of getting at least an error.

In the depolarization channel, the qubit loses information; on the other hand, there

is an amplitude damping channel where the qubit loses energy in the form of deex-
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citation from |1⟩ to |0⟩. Its transformation can be described as in 27, but with

E0 =

1 0

0
√
1− p

 ;E1 =

0
√
p

0 0

 (29)

All the previous equations satisfy

∑
i

EiE
†
i = 1 (30)

That preserves the normalization of the state of the qubit.

3.3 IBM Calibration

IBM processors differ in terms of the number of qubits and performance. IBM allows

its users to identify that through some parameters.

• ’T1’ [µs] and ’T2’ [µs] are the qubit relaxation and the dephasing times,

respectively.

• ’Frequency’ [GHz] refers to the one to excite the qubit w12(eigenvalue of ω0â
†â

of the first term of equation20).

• ’Anharmonicity’ [GHz] refers to the frequency difference between w12 and w23

(eigenvalue of −α
2
â†â(â†â− I) of the secon term of equation20).

• ’Readout assignment error’ is the probability of a measurement returning the

wrong value.

• ’Prob meas0 prep1’ is the probability of measuring |0⟩ after preparing the |1⟩

state and vice versa for ’Prob meas1 prep0’.

• ’Readout length’ [ns] is the time it takes to perform a measurement.

• ’ID error’ is the probability of the error induced by having an inactive qubit.

• ’
√
X error’ and ’Single-qubit Pauli X error’ probability of getting an error

induced by applying the gate.
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• ’CNOT error’ is the probability two-qubit gate error.

• ’Gate time’ [ns] is the time it takes to perform a two-qubit gate.

Figure10 is an example that shows the calibrations of ibm_manila.

Figure 10: Table of calibration of ibm_manila

This table shows the parameters defined in section 3.3 of each qubit in the sys-

tem. This calibration changes temporally.

Quantum volume is a parameter set by IBM to determine how good is the perfor-

mance of the quantum processor; it takes into account the number of qubits, gate

and measurement errors, crosstalk, and the connectivity of the qubits.

3.4 Error mitigation

With an ultimate goal to reach fault-tolerant quantum computers by performing

fault-tolerant error correction, the systems have an insufficient number of qubits to

do that. Quantum error mitigation QEM is a path to get improved results of a

quantum computation in the NISQ (Noisy Intermediate Scale quantum) era.

This technique involves preparing the qubits and repeatedly executing them into

a particular circuit. Then by comparing the counts (probabilities) of the outcome

and the expected outcomes, the errors that occurred can be considered in some way
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correlated such that they are related in a matrix transformation of the qubit. This

matrix can be reversed every time a circuit is applied. The QEM method will work

efficiently in low Noise to Signal Ratio cases. Otherwise, it is useless.

3.5 Results

After describing the processors that will be worked on, the noise generated by the

processor, and the kind of errors produced, let us run both circuits (Circuit # 1 and

Circuit # 2 ), each on two different processors, to see those effects.

After running Circuit # 1 on ibm_manila and ibm_santiago processors, we get the

following results

(a) |001⟩ targeted. X-axis represents the
states measured

(b) |011⟩ targeted. X-axis represents the
states measured

(c) Measuring the number of counts of each
state while changing the target state

Figure 11: Performing Circuit # 1 on ibm_manila

In Figure 11, Circuit # 1 is run on ibm_manila. Figure11a shows the counts
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of each state resulting from running the circuit on several shots and presented as a

probability on the Y-axis; on the X-axis, we observe the states measured on each

shot (|000⟩ , |001⟩ , Etc); this result is after targeting |001⟩. The same can be said

about Figure 11b, but this results after targeting |011⟩. In Figure11c, each state is

targeted individually; targeted states are listed on the Y-axis; beside each state, we

list the counts (probabilities) in the outcome, which are listed on the X-axis. The

probabilities are visualized as the color of each pixel and defined on the color bar on

the right. The probabilities of all states seem to be close to each other, with some

fluctuations in Figure11a and Figure11b. Figure11c looks somewhat varying around

the middle of the color bar; on |011⟩, it seems random.

(a) |011⟩ targeted. (b) |110⟩ targeted.

(c) Same as in Figure11c

Figure 12: Performing Circuit # 1 on ibm_santiago. Same as in Figure11

In Figure 12, Circuit # 1 is now run on ibm_santiago. The same comments

as on Figure11a can be made about Figures 12a and 12b. Figure12a shows the
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result after targeting |011⟩. Figure 11b shows the result after targeting |011⟩. A

detailed description of Figure11c can be said in Figure 12c. In general most of the

sub-Figures in Figures11 and Figure12 show almost equal probability distributions

in all the states. Figure12c looks like a random distribution of colors in the upper

pixels and is somewhat smeared out in the lower pixels.

Let us see the results of Circuit # 2 on ibm_oslo and ibm_nairobi processors

too. The results are as follows

(a) |001⟩ targeted. (b) |110⟩ targeted.

(c) Same as in Figures11c, and 12c

Figure 13: Performing Circuit # 2 on ibm_oslo. Same as in Figures11, and 12

In Figure13, we execute Circuit # 2 on ibm_oslo. Figures 13a and 13b can be

the same described as Figure11a, but they are the result of targeting Circuit # 2

on |001⟩ and |110⟩, respectively. Figure13c same described as Figure11c. In Figures

13a and 13b, we can see that probability is mostly in one state, Figure 13a in |001⟩

and Figure 13b in |110⟩, with smaller probabilities in the rest of the states. Figure
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13c shows a pattern in the color map, and it looks like such a diagonal line that its

elements(pixels) have high probabilities.

(a) |001⟩ targeted. (b) |010⟩ targeted.

(c) Same as in Figures11c, 12c, and 13c

Figure 14: Performing Circuit # 2 on ibm_nairobi. Same as in Figures11, 12, and
13

The same explanations of Figure13 can be said for all sub Figures in Figure14.In

Figure 14a, we can see that probability is concentrated mainly in |001⟩ with smaller

probabilities in the rest of the states. While in Figure 14b |010⟩ is seen to have

the highest probability, the other states have higher probabilities than Figure 14a.

Figure14c also shows a diagonal line, but a bit more faded than in Figure13c.

Finally, let us try to implement a quantum error mitigation on Circuit # 2, which

targeted one of the states. We got the following results Figure15 shows the probabil-

ity distribution on the whole states in noisy (original) form (in blue) and mitigated

form (in red). The probability can be seen accumulated in both cases in |110⟩.
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Figure 15: |110⟩ is targeted by Circuit # 2 and executed on ibmq_quito

4 Discussion

The results in Figures 11a,11b,12a, and12b do not contain any valuable information

for not getting information about the targeted states. That is due to high noise that

we can not distinguish the targeted states, and that is clear in Figures 11c and 12c,

which look random, the change of errors between targeted states can be explained

by needing different number of gates in different cases (X gates, for example, see

section 2.1.1) and these noises are either random or pseudo-random processes that

will change even running the same circuit at different times. In the color map, the

probabilities are distributed randomly such that there is no trace of a diagonal line.

We might need several error correction models to start seeing results to solve that.

Moreover, since the results are so poor, we cannot even compare the two different

devices, ibm_manila and ibm_santiago, and this shows that the cause of the poor

results is not a particular processor but the circuit construction itself.

Figures 13a,13b, and 14a show that the probabilities mostly accumulate in the tar-

geted states. That indicates that Grover’s algorithm has succeeded when imple-

menting Circuit # 2 in this case. We can see that also in Figures 13c and 14c,

where a diagonal line appears as in Figure3c in the ideal case. We can frequently

distinguish target states in Circuit # 2. However, in Figure14b, we observe relatively

high errors compared to before; this takes us to compare ibm_oslo and ibm_nairobi,

simply comparing between Figures 13c and 14c, we can see that Figure 13c has a
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more apparent diagonal line than in Figure14c. We can say then ibm_oslo performs

better than ibm_nairobi in Circuit # 2.

We can see that Quantum Error Mitigation improves the results, as seen in Fig-

ure15. We observe that the probability increased after QEM, and most other states

decreased their probability (decrease of errors).

To quantify how good or bad the device distinguished a targeted state in a circuit,

[3] proposed a parameter S and called it the sensitivity.

S = 10log10

(
Pt

Phn

)
(31)

Where Pt is the probability of the target state and Phn is the probability of the

highest noisy state. Where S ⩾ 3 is the critical point where the device starts to be

sensitive to the target state.

The average sensitivity of each device is as follows Sibm_oslo = 6.7, Sibm_nairobi = 3.27,

further showing the advantage of ibm_oslo and ibm_nairobi on the edge of the

critical point.

The sensitivity in Figure15 before QEM is Sbefore = 4.25, and after QEM is Safter =

5.7. We can see here how QEM improved the sensitivity of the measurement.

5 Conclusion

Let us conclude this study by summarizing of the fundamental results concerning

to our initial aims on the topic. We will also review the study’s limitations and

propose opportunities for future research.

As we have seen in the results, Circuit # 2 outperformed Circuit # 1 in distinguish-

ing the targeted states, and that is quantified by calculating the average sensitivity

of where Sibm_manila ≃ −0.1 is the average sensitivity of Circuit # 1 on ibm_manila,

which is incomparable to the one of Circuit # 2. Circuit # 1 has more qubits in-

volved in the computation than Circuit # 2 ; in turn, the number of gates used in

the circuit is defined as the depth of the circuit. We can conclude that optimizing

the circuit (decreasing its depth) improves the results, especially in such a noisy
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channel. On the other hand, comparing the performance of Circuit # 2 on two

different IBM processors, ibm_oslo and ibm_nairobi, showed that ibm_oslo shows

less error (better performance) than ibm_nairobi, and that was confirmed by com-

paring their average sensitivities. Furthermore, at the end, the result in Figure15

shows that quantum error mitigation can make a difference in the results by im-

proving them. This study was limited to three qubits (23 states), but to make sense

of the study, we have to go to a higher number of qubits, which may result in more

errors due to the need to use more gates. Then we will need some error correction

models to get more reliable results. The study may also be extended to target more

qubits, which will struggle with the same problems of more qubits circuit, which

is the high depth of the circuit. Finally, we can suggest an application of Grover’s

algorithm, Quantum Random Access Memory (QRAM) [21], by introducing a new

kind of qubit representing the address the code will get after finding the data.
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A Basics of Quantum Information

A.1 Qubit

A qubit as any quantum system can be in multiple states instantaneously, that phe-

nomenon is called superposition and it is a wave property from classical mechanics.

Here the states will be represented in Dirac notations, |x⟩ ≡ x state. Compare Ap-

pendix A (195-214) in [22] for a more detailed explanation.

The total state of a qubit can be in a general form as in equation 1

|qubit⟩ = cos(θ/2) |0⟩+ eiΦ sin(θ/2) |1⟩

θ determines the probability distribution on the states. p|0⟩ = cos2(θ/2) and p|1⟩ =

sin2(θ/2). Φ is a phase between the states.

When the qubit is measured, as for any quantum system it collapses into one of the

superposed states.

The state of the qubit can be also represented in a vector form in a unit radius

sphere where θ and Φ are the Euclidean angles Figure 16.

Figure 16: Bloch sphere representation of the qubit state

In Figure 16, a vector pointing along the positive and negative Z-axis represent

|0⟩ and |1⟩ respectively and any vector in between -with an angle θ with the Z-

axis - represent a superposition of |0⟩ and |1⟩. At the X-Y plane there is an equal
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probability of |0⟩ and |1⟩, where a vector pointing with the positive and negative

X-axis represent |+⟩ = |0⟩+|1⟩√
2

and |−⟩ = |0⟩−|1⟩√
2

respectively, those states differ by a

phase and any state between them -with an angle Φ with the X-axis - have different

phases.

A.2 N qubits

We can represent a system of N qubits in the form of

|N qubits⟩ =
N⊗
i

|qi⟩ (32)

where ⊗ is the Kronecker multiplication.

A.3 Operators

A.3.1 Single qubit gates

These gates are a unitary transformation of a single qubit.

Let’s define some of the useful basic operators that will be used in this thesis.

A Hadamard or as represented by the symbol H is a rotation by 90° of the state

in the θ direction, or in other words changes the basis from {|0⟩ , |1⟩} to {|+⟩ , |−⟩}

and its matrix representation is as follows

H =

1 1

1 −1

 (33)

Pauli operators can be also seen as rotation operators in different directions. There

are three of them σX , σY , σZ or X,Y,Z. X is a NOT and gate flips the state about

the X-Y plane. The Z changes the phase in the state by flipping it about the Y-Z

plane. The Y gate is a combination of X and Z gates that flips the state about the

X-Z plane. The matrix representation of these gates is as follows

X =

0 1

1 0

 ;Y =

0 −i

i 0

 ;Z =

1 0

0 −1

 (34)
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Those operators are hermitian (self-inverse) U † = U , unitary U †U = 1 and reversible

(∃ U−1).

A.3.2 Multi qubit gates

As in classical computing, in quantum computing there are gates that take more

than one input to process them, these operations as in single qubit gates should

be reversible, so the one of the final states remain unchanged but the other change

according to the first, as shown in the figure below

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f(x)⟩

We will introduce here the CNOT and the Toffoli gate.

A CNOT gate as in classical case changes the target bit according to the control

bit. In the quantum case if there was a superposition of states in the control then

the target changes differently according to each state (Kronecker sum). It is of the

form

q0 : •
q1 :

where

•

represents the control qubit and

represents the target qubit (same symbol as the Kronecker sum ⊕).

A Toffoli gate is a multi-control operation that changes the targeted qubit according

to both control qubits (AND / ⊗).
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q0 : • |q0⟩
q1 : • |q1⟩
q2 : |q2 ⊕ (q0 ⊗ q1)⟩

The Toffoli gate activates only one state |q0q1⟩ = |11⟩.

Using Toffoli gates, we can build a more than two control, gates as following

q0 : • •
q1 : • •
q2 : •
q3 : •
q4 :
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B Multi number of solution Grover’s Algorithm

Previously we investigated a one-solution Grover search algorithm. This work can

be generalized to many targeted states, which will be discussed in this section.

Let us consider M number of solutions where M < N . The set of M number of

solutions is W = {ωi|i ∈ [1,M ]}.

g(x) =

 1 x ∈ W

0 otherwise
(35)

Doing a similar derivation as in equations 4, 5, 6

|s⟩ = 1√
N

∑
x/∈W

|x⟩+ 1√
N

∑
x∈W

|x⟩ (36)

|s⟩ =
√

N −M

N

1√
N −M

∑
x/∈W

|x⟩+
√

M

N

∑
x∈W

|x⟩ =
√

N −M

N
|s′⟩+

√
M

N
|ω⟩ (37)

For the number of iterations, the same calculation as in 1 solution case can be

done except when replacing θ, where here logically θ should depend on both N and

M .

Lemma 2. The number of iterations to complete the Grover algorithm of M targeted

states is of order O(
√

N/M).[4]

.

Proof. Repeat equations 10, 11 and 12.

V Uf |s⟩ = cos(3θ/2) |s′⟩+ sin(3θ/2) |ω⟩ (38)

V Uf |s⟩ = cos(θ + θ/2) |s′⟩+ sin(θ + θ/2) |ω⟩ (39)

(V Uf )
r |s⟩ = cos(rθ + θ/2) |s′⟩+ sin(rθ + θ/2) |ω⟩ (40)

So r = π/2θ − 1/2. Instead here θ = arcsin(
√
M/N) ≃

√
M/N then r =

π
√

N/4M − 1/2 ≃ O(
√

N/M)
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We can see that the number of iterations increases with the decrease of M and

vice versa since it is easier to find a more significant chunk of data than a more

specific one.

C Code

Compare [23] for further explanation about coding on Qiskit.

C.1 Preparation

from qiskit import ∗ #import e v e r y t h i n g from q i s k i t l i b r a r y

import numpy as np

import matplotlib.pyplot as plt

from qiskit import IBMQ

#Import t he IBMQ i n t e r f a c e

from qiskit.tools.visualization import plot_histogram

#import a l i b r a r y to p l o t t he h i s t og rams o f t he r e s u l t s

from qiskit.visualization import latex as _latex

#import t he l i b r a r y t h a t w r i t e s t he c i r c u i t s in Latex form

C.2 Circuit number 1

C.2.1 Phase Oracle

def phase_oracle(n,input_str ,name=’uf’):

#A func t i on t h a t t a k e s an inpu t s t r i n g o f t he t a r g e t e d

#s t a t e and adds a phase to i t

#This i s t h e phase ope ra to r

qc = QuantumCircuit(n, name = name)

#Create a quantum c i r c u i t named by name = ’ u f ’ l a b e l e d as qc

#n i s t he number o f q u b i t s
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for i in range (0,3):

#go a l l over the s t r i n g e l ement s

if input_str[i] == ’0’:

qc.x(2−i)

#app ly X ga t e in (2− i ) th q u b i t

#s in c e the r e s u l t s are p r e s en t ed in the o ppo s i t e way

#app l y X ga t e on ly on the 0 s u b s t a t e s

qc.ccx(0,1,3)

#ccx i s a T o f f o l i a p p l i e d on qc as qc . ccx

#ccx ( c on t r o l qub i t , c o n t r o l qub i t , t a r g e t q u b i t )

qc.ccx(2,3,4)

qc.ccx(0,1,3)

#Bui ld a 3 c on t r o l ga t e o f t h r e e T o f f o l i g a t e s

for j in range (0,3):

if input_str[j] == ’0’:

qc.x(2−j)

#app ly aga in X ga t e to the same s u b s t a t e s to r e tu rn i t back as i t was

#Return the c i r c u i t

return qc

C.2.2 Diffuser

def diffuser(n,name=’v’):

#A func t i on as the d i f f u s e r

#f l i p s t he s t a t e around the i n i t i a l s t a t e
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qc = QuantumCircuit(n, name = name)

#Create a quantum c i r c u i t

#app l y Hadamard ga t e on a l l q u b i t s

for qb in range(n−2):

qc.h(qb)

#app ly a Hadamard ga t e on q u b i t number qb

#con t r o l phase on 000 s t a t e

#app l y X on a l l q u b i t s

for i in range(n−2):

qc.x(i)

#app ly X on q u b i t number i

qc.ccx(0,1,3)

qc.ccx(2,3,4)

qc.ccx(0,1,3)

#Bui ld a 3 c on t r o l ga t e o f t h r e e T o f f o l i g a t e s

#app l y X on a l l q u b i t s

for i in range(n−2):

qc.x(i)

#app ly aga in Hadamard ga t e on a l l q u b i t s

for qb in range(n−2):

qc.h(qb)

#Return the quntum c i r c u i t

return qc
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C.2.3 Total circuit

Combine the previous circuits into one after repeating certain number of times.

n = 5 #t o t a l number o f q u b i t s

gr = QuantumCircuit(n,n−2)#Create a Grover C i r c u i t

m=1 #number o f s o l u t i o n s are searched f o r

r= int(np.floor(np.pi/4∗np.sqrt(2∗∗(n−2)/m)))

#number o f t imes we need to app l y the a l g o r i t hm accord ing to the t h e o r e t i c a l e qua t i on

gr.h(range(n−2))

#prepare the f i r s t 3 q u b i t i n t o |+++>

#prepare the l a s t q u b i t in |−> be ing t a r g e t q u b i t

gr.x(n−1) #app ly X

gr.h(n−1) #app ly Hadamard

#Combine the phase o r a c l e and the d i f f u s e r and r epea t r t imes

for j in range(r):

gr.append(phase_oracle(n,’011’),range(n)) #t a r g e t |011> s t a t e

gr.append(diffuser(n),range(n))

gr.measure(range(n−2),range(n−2))

#Measurement o f f i r s t t h r e e q u b i t s

gr.draw(’mpl’)#draw the c i r c u i t

C.3 Circuit number 2

C.3.1 Phase Oracle

def phase_oracle(n,input_str ,name=’uf’):
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#A func t i on t h a t t a k e s an inpu t s t r i n g o f t he t a r g e t e d

#s t a t e and adds a phase to i t

#This i s t h e phase ope ra to r

qc = QuantumCircuit(n, name = name)

#Create a quantum c i r c u i t named by name = ’ u f ’ l a b e l e d as qc

#n i s t he number o f q u b i t s

for i in range (0,3):

#go a l l over the s t r i n g e l ement s

if input_str[i] == ’0’:

qc.x(2−i)

#app ly X ga t e in (2− i ) th q u b i t

#s in c e the r e s u l t s are p r e s en t ed in the o ppo s i t e way

#app l y X ga t e on ly on the 0 s u b s t a t e s

qc.ccx(0,1,3)

#ccx i s a T o f f o l i a p p l i e d on qc as qc . ccx

#ccx ( c on t r o l qub i t , c o n t r o l qub i t , t a r g e t q u b i t )

qc.ccx(2,3,4)

qc.ccx(0,1,3)

#Bui ld a 3 c on t r o l ga t e o f t h r e e T o f f o l i g a t e s

for j in range (0,3):

if input_str[j] == ’0’:

qc.x(2−j)

#app ly aga in X ga t e to the same s u b s t a t e s to r e tu rn i t back as i t was

#Return the c i r c u i t

return qc

42



C.3.2 Diffuser

def diffuser(n,name=’v’):

#A func t i on as the d i f f u s e r

#f l i p s t he s t a t e around the i n i t i a l s t a t e

qc = QuantumCircuit(n, name = name)

#Create a quantum c i r c u i t

#app l y Hadamard ga t e on a l l q u b i t s

for qb in range(n−2):

qc.h(qb)

#app ly a Hadamard ga t e on q u b i t number qb

#con t r o l phase on 000 s t a t e

#app l y X on a l l q u b i t s

for i in range(n−2):

qc.x(i)

#app ly X on q u b i t number i

qc.ccx(0,1,3)

qc.ccx(2,3,4)

qc.ccx(0,1,3)

#Bui ld a 3 c on t r o l ga t e o f t h r e e T o f f o l i g a t e s

#app l y X on a l l q u b i t s

for i in range(n−2):

qc.x(i)

#app ly aga in Hadamard ga t e on a l l q u b i t s
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for qb in range(n−2):

qc.h(qb)

#Return the quntum c i r c u i t

return qc

C.3.3 Total circuit

Combine the previous circuits into one after repeating certain number of times.

n = 5 #t o t a l number o f q u b i t s

gr = QuantumCircuit(n,n−2)#Create a Grover C i r c u i t

m=1 #number o f s o l u t i o n s are searched f o r

r= int(np.floor(np.pi/4∗np.sqrt(2∗∗(n−2)/m)))

#number o f t imes we need to app l y the a l g o r i t hm accord ing to the t h e o r e t i c a l e qua t i on

gr.h(range(n−2))

#prepare the f i r s t 3 q u b i t i n t o |+++>

#prepare the l a s t q u b i t in |−> be ing t a r g e t q u b i t

gr.x(n−1) #app ly X

gr.h(n−1) #app ly Hadamard

#Combine the phase o r a c l e and the d i f f u s e r and r epea t r t imes

for j in range(r):

gr.append(phase_oracle(n,’011’),range(n)) #t a r g e t |011> s t a t e

gr.append(diffuser(n),range(n))

gr.measure(range(n−2),range(n−2))

#Measurement o f f i r s t t h r e e q u b i t s
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gr.draw(’mpl’)#draw the c i r c u i t

C.4 Get the results

C.4.1 Qiskit interface

simulator = Aer.get_backend(’qasm_simulator’)

job=execute(gr,backend = simulator ,shots=1000)

#Run/ exe cu t e t he c i r c u i t on

#qasm_simulator ( p rov i ded by Q i s k i t ) 1000 t imes

result=job.result()

counts = result.get_counts()

#count how many t imes each s t a t e show in the measurement

plot_histogram(counts)

#p l o t t he r e s u l t in a h i s togram

C.4.2 IBM cloud

from qiskit.tools.monitor import job_monitor

IBMQ.load_account()

#load my account

#l i n k account to ibm−q p ro v i d e r

provider = IBMQ.get_provider(’ibm−q’)

#Choose which p roc e s so r to be the backend

qcomp = provider.get_backend(’ibm_oslo’)

#execu t e t he c i r c u i t gr

job = execute(gr, backend=qcomp)

job_monitor(job)
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#job_monitor w i l l d i s p l a y s t a t u s in fo rmat ion r e ga rd in g the c i r c u i t

#such as queue t imes and v i ew ing the r e s u l t s queues

result = job.result()

#ge t the r e s u l t

plot_histogram(result.get_counts(gr))

#p l o t t he r e s u l t
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